computer &
i

===k A

VALENTE computacion
Santa Engracia, 88 ® 445 32 8b.
28010 MADRID

NUEVA DIRECCION
_ Caleruega, 8
28033 - MADRID
Telétono 202 67 01

Urer Guide

For the Sinclair QL Computer

1.3: BACKUP

FORTH for the QL is :upplied on a microdrive cartridge. This
cartridge contains several files, Before you do anything else
back up the supplied cartridge by using the CLONE program. It
15 recommended that you make two backups. The HMaster is then used
a3 an emergency backup, apd not to run the software,

Copies of the Master may be easily made uéing the ‘clone’ program
{supplied on each Computer One software cartridge) as follows:

1. Place the Master copy in microdrive 2 [the right hand side
drive],

2. Place a blank cartridge in microdrive 1.
3. Enter the following command:
LRUN mdv2_clone <ENTEK>
4. The QL will respond with Qarious instiuctions to name the new
microdrive, ana initiate the copying. Check you have inserted

thz cartr:idges in the correct drives, and invoke the copying.

. The ‘cloned’ system may be used as soon as tne microdrives
have stopped running.)

Riopeat the procedure with another cartridge, and store the master
2nd one of the copies. in a safe place. Use the remaining copy as
your working master - only use the others in dire emergency,

1.4: STARTUP

1

¥

Te startup the Computer One FORTH system, 1t is important
Lo carry out the foliowing :— .

(1) Remove any cartridges from the two microdrives, 1t is
inadvisable to reset the system with the cartridges in the drives,
as they may be damaged. : ’

(21 Fress the reset button on the right hand side of the
machine,

t3) Place the claned FORTH cartridgye in drive one - the
1eft hand drive, .

14) Pres: Pl or P2 to select Monitor or TV mode,

Wnem you have selected the appropriate mode, the FORTH system will
automatically be loaded from the cartridge. The FORTE system
image will be loaded and made resident in memory, and then started
up ready for your input, ‘Computer One FORTH will appear
on the screen, together with the word "READY to indicate all 1s
well. The FORTH system image takes up approximately 20k, and

operates within 64k of memory leawving you about 44k as workspace.

NB: During this process you will see that grive 2 is accessed,
FORTH is looking for a file on drive 2 called FORTH_SCR. This
is the file that you use to contain screens of source code, If
you insert a microdrive into drive 2 with your working copies of
FORTH_SCR, then these will be used, Otherwise, by default, FORTH
will use FORTH SCR en microdrive one. The FORTH word 'BLOCK® will
refer to blocks {screens) on this file. You can change the
default screen file by typing USING <filename>.

1.5: CONTENTS OF THE SUPPLIED CARTRIDGE

The supplieg cartridge will contain the following files:-

BQOT initial loader

CLONE program to back up the FORTH cartridge
IMAGE FORTH itself '

FORTH_SCR useful goodies in source form

ELECTIVE_SCR optional extensions to FORTH

EDITOR_BIN Full screen editor as a binary overlay
ASMEB_BIN 68000 macro-assembler as a binary overlay
SCOPY_BIN File copy utility as a binary overlay

1.6: GETTING STARTED WITH FORTH ~ An exampie session

The only sure w2y of learning FORTH is te use it, This is because
FORTH programmers tend to spend a greater proportion of their time
at a termipnal. This in turn is the result of being able to test
each new definition as soon as it has been entered, The PFORTH
word : is used to start a new definition, and the word ;7 is used
to finish it. fThe name of a word can contain any character you
want - preferably printable ocnes, 5

The first thing you can do after you 've loaded FORTH on Zhe QL for
the first time is to type WORDS <ENTER> this will display a list
of the predefined words in FORTH. - Note that if you have been
using FIG-FORTH in the past, WORDS replaces VLIST.

Suppose we had a program im which we wanted teo say hello to
people. First we could define a word that says hello, We use a
dot &5 the first character of the name because it i5 a FORTH
convention that words that print things start with a dot,

: .HELLO .7 Helle " ;

The word ." will print out-every thing Erom then on up to the next
" so that when you type .HELLD followed by a :arriagq rerurn,
FORTH will print out Hello followed by ok, which is FORTH's way af
acknowledging that there were no errers in what it was last asked
o do. . -

LA

CHAPTER TWO

A Quick introduction t¢ FORTH

2.1: WRITING PROGRAMS IN FORTH-

FORTH is a different sort of computer language. It is
interactive, in that you can enter commands from the keyboard,
compiled in that the names of pre-defined functions that you type
in are ronverted to addresses, and interpreted in that these
addresses point to other pointers which eventually point to
executable code wkich is chen executed. PORTH is easy to use
because it is interactive, fast becausc it is compiled, and not as
fast as it might be because it is interpreted. FORTH is a language
with a definite style,

In general FORTH takes a little longer te lears thaH other
languages. One reason for this is that there are a ot of words
te learn in FORTH before you can use it well - just like a
language. In fact the predefined functions in FORTH are called
words. These words are stered as a dictionary, and the group of
words forming your area of intcrest - the coatext in which you
work - is called a vocabulary. For éxample the words used to
define the assembler are kept in a ‘vocabulary called ASSEMBLER.
There is an element of Jargon in FORTH, as in all computer
languages, Do persevere, FORTH is well worth the effort,

The FORTE ruh-time package is actually a Iemarkably compact
imterpreter, compiler, and memory management system. Any command
or sequence of commands may be executed directly from the
keyboard, aor from the ‘disc’ storage area. Programs in FORTH are
compiled from combinations of existing commands {represented by
words in the vocabulary), new commands as defined by the user, and
coptrol structures such as IF.,.ELSE...ENDIP or DO...LOOP.
Usually, new commands are daveloped interactively, and at the
terminal; the final version is then entered using the editor and
sdved on mircredrive, where it. can then be invoked from the
xeyboard, of used by another pregram.

- The beauty and power of PORTH lies in its exténsihility and

flexibility. New vocabulary words,” funetions, and even ~ita

types, can be added to the language at will either as high-level
or assembler words. FPrograms are built up in the same way as
people organise their thinking - by successively creating new
furctions in terms of old onas, progressively forming hierarchies
of new levels of abstraction,

If your experience of programming has been restricted to such
seauentially ocriented languages as BASIC, you u11! 1n1t1a11y|£1nd
reading and writing programs in FORTH somewhat bizarre. Patience
will bring rich rewards. FORTH can be practically self-documenting
with good choice of word names; the language lgnds itself well to
bottom-up design and coding; names of functions can be freely
chosen to describe what they do, and you can use any character
willhin 4 WOlw uaine; embeoadced COMGENTS may be_as iong as you wish
without & space or speed penalty in the compiled code. However,
most FORTH prograns keep most of their working variables on the
stack, rather than as named variables, so that reading some
sections of code can be a little mind-boggling even (o; the
experienced, The secret is to keep definitions short and simple.
Lazy programmers are good programmers because they make life easy
for themselves - and part of making life easy 1s making sure that
you can work ocut what the code is doing & year from now.

You may weil [ind it profitable to study the source code of the
demonstration programs supplied with CCMPUTER ONE PORTH as a gu}de
to style. Read the giossary docuqentatxgn. and spend a while
trying out the functions, and chserving their action on the stack.

2.2: STACKS AND POSTFIX NOTATION

FORTH contains two stacks, one for storing return addresses fwhat
was 1 doing last/where do I go back to?), and one far storing
data. The first stack is called the return stack, and the second
is called the data or parameter stack, The data stack is an
efficient method of passing data between the words that make up a
FORTH program. Any word that needs data takes it from the top of
the stack, and puts any results back on top of the stack., Nearly
all modern processors provide for the use of stacks, so these

oparations are very fast, :

Becausc stacks arec used for data handling, the use of post-fix, or
reverse Polish notation, 1s very sultable. In this form of
writing arithmetic expressions, operands {(the data used) come
before the operators (how you use the data}l, e.g

The normal {in-fix) notation expression :- at**2 + bt + ¢

I3 better expressed as - lat + blt + ¢

which is then expreased in post-fix as :- at*bob+t*coxr

Hotice that the use of brackets becomes unnecessary. This is
because of the use of the stack to hold intermediate resulls,

-7 -

Example:-

Control structures must be used inside a colon definition; they
cannct be directly executed from the Keyboard. Any one structure
must be written entirely within one definition; you cannot put the
IF 1n one word and the ENDIP in another.

1IF .. ENDIP
Template:- flag IF words ENDIF

At IF the flag on the top of stack {TOS) is examined, If the flag
is true (non-zero), the words between IF and ENDIF are executcd,
octherwise they are not,

If you wish to use the tested stack value inside the control
structure you must duplicate it before the test. This can be dope
using DUP, or more conveniently in this case using -DUP, which
only duplicates a number if it is non-zero.

IF...ENDIF structures may be nested, that -is, @ne may contain
another. BUT, nested structures must fit inside each other and may
not overlap.

Example:~- .
: TEST IF ." top of stack is nop-zero® ENDIF
1 TEsT top of stack is non-zerc ok
¢ TEST ak

IP...ELSE...ENDIF - :
Template:~ flag [F true words ELSE false words ENDIF

Tnis structure behaves just like IF...ENDIF apove except that an
alternate set of words will execute when the flag is false lzerol.

TEST IF .* top of stack is non-zero”
ELSE ." top of stack is zero"
ENDIF ; - -

DO JLOGP and DO. .. +LOGP .
Template:- iimit index DO words LOOP
limit index DO words increment +LOOP

This structure is very roughly the same as BASIC's FeR Xx=1 70
i0.,..HEXT. It allows-looping or the repetitive execution of a
set of words., The limits of the leoop are defined by parameters on
the stack at execution time.

The starf and finishing indices must be on the stack before DO is

reached. These are then transferred to the return stack by DO,
ant the top of stack represents the current lowp :index, and the

- 10 -

next wn stack represents the limiting value, Execution carries on
as far as LOOP or +LOOP, when the index is incremented by ! in the
case of LOOP, or by the value of the top of stack for +LO0P._ 1f
the new index is stiltl less than the limit, executicn resumes just
after PO and the cycle repeats, [If the index is greater than or
equal to the, limit, execution resumes after LOOP. You can force
the program to leave the loop at the next test by using the word
LEAVE, which sets the index to the limit so that when LJOOP ar
+LO0OP is next executed, the loop does not repeat. Tne current
index may be inspected by the word I, which returns the index.

DC...LOOP structures may be nested to any level up to the capacity
of the rewvurn stack. The index of the next outer loop may be

inspected with the word 1.

Warnings:-

** If you use the return stack for temporary storage within
DO...LOOP, I and J will return incorrect values,

** Any data put on the return stack after DO must be removed
before LOOP.

** Regardless of <the value of the 1initial limit and index, the
loop will always execute at least once,

*¢ Because the test 15 performed after the ;ndex has hegn
incremented, the limit wvalue of the L1pdex 15 pever used,

Example:-
TEST 101 DO I . LOOP
TEST 123456789 ok
TESTZ 101 PO I . 3 +LDOP s

TBST2 1 47 ok

BEGIN. . . MGAIN
Template:- BEGIN words AGAIN

This structure forms a loop that never terminates unless ap errce
condition cecurs, or a word such as ABORT or QUIT is executed.
The first example will read and echo characrers from the keyboard
forever, the second will exit when the carriage rTeturn key is

pressed.

Example:
: TESY BEGIN XEY EMIT AGAIN

TEST: BEGIN KEY DUP 12 = IF ABORT ENDIF EMIT AGAIN ;

H a

-~ 11 =~

To draw :n the new window, we have to switch the work
channel to the new channel. To find the channel 1d of a file, we
use¢ the word CHANNEL which takes an fcb description, and returns
the channel id.

Eg: new_window channel 4. tprints 12-bit channel i1d in decimal)
If we wish to draw a circle in tha new window, we first have to

make it the ’'work <c¢hannel, then clear 1t and finally draw the
circle in at.

£9: new_window channel is-work (sets new window to be wark channel}

cls { cls operates on work channel)
£ 5O €4 30 £ 40 circle { draw circie in work window |}

Note 1l: The word "f¢ 1is wused to generate floating point
values, .which are used by many of the graphics commands ([(more 1in
Glossary 8).

Note 2: To write text to this window we would have to switch the
output cnannel to this wingdow.

Eg: new_window channal is-output

We now give an example program wnicon resizes the defaule output
channel, creates a new window, and draws a cifcle in it. Resizing
the output channel, to, for example, the bottom third of the screen
s a good idea 1f we 3re using the graphics interactively, since
this prevents the whole screen scrolling whenever the prompt is

outpur
Variable param-ptr { Set up word whose address is put on stack
each time it is referred to)
hé:e.param-pt: ! { stores vaiue "here’ at param ptr }
8 Allat { allocate B bytes i

: par Qup rot swap | 2 + -
: param~fill par par par ! :

{ These two definitions £ill a. 4-worgd parameter block for use in
- resizing a window given the four values and address of the block).

- 200 20 50 482 param-ptr @ éaram—fill
| wifdow size 482x50a220xIC3

ALATam-ptr # window { resize work)

- feb gragh -
grapb filename scr_ 432x200a20x0

graph apen-file { atrach & oben new ulndcw !

- 14 -

graph chanrel is-work { graphics is work window |}
2 white border green paper cis
£d 50 E¢ 50 74 30 circle [draw a circle)

This allows you to use the newly created window interactively,
withaut disturbing the window when the cutput channel scrells.

An example program which draws a globe in different celours using
the CIRCLE and OVER words may be found in screen 16 of the fiie
‘elective_scr’ on your Computer One FORTH microdrive.

[word commands)
SHIFT Right
SHIFT Left

SHIFT CTRL Right

{line commands|

CTRL ALT Left

CTRL SHIFT J

peginning of a line move it to the end of the
previous line.

Move cutrsor right. If cursor is already at the end
of a line, move i1t to the beginning of the next.

Move curser up. IE cursor is already on the top
line move it tc the left margin,

Move cursor dawn. If cursor is already on the
battom lire, move It to._the right margin.

Move cursor to beginning of next lipne, If the
cursor is already on the bottom line, move it to
the right marqgin.

Tab right. Move cursor right te the next tab
position, If it is at the end of the iine move to
the first position cf the next-line, - -

Tab left. Move cursor left ta the next tab
position. If it is at the start of rthe line sove
to the last tab position of the next line,

Move cursor to end of text or the current line,

Mava cursor [orward one word.
Mcove cdursor back one word.
Delete word to right of the cursor. Discard any

trailing spaces, and bring the next word and the
remainder of the line up to the cursor.

Erase the Ilne contalnxag the Cursor, ang
replace Lt thh a blank lzne. -

pelete the line containing the cursor; and move
all the lines below it up one line, leaving a
blank line at the bottom, .

Join lines, Brimg as many words as possible from
the next line up onteo the current line, then
teft align the next-line, If{f the next line is
blank after this opperation, delete it.

Insert a btlank line at the cu}adr, moving the
lower lines down, The bottom line im lost.

- 18 -

CTRL ALT S

F2

Fl

Fq

£3

Split line at cursor., A new line is inserted.
All the text to the right of the cursor is moved
down to the new line. The bottom line is loat,

Cdpy current line to the holding buffer, and
delete tne current line.

Copy current line to the holding buffer, The
line itself is unaffected, and the copy is
displayed below the editing box. The number of
lines in the buffer is also shown.

Pop the top line of the holding buffer to the
current line, which is overwritten. Note that the
line is lost from the holding buffer.

Pop the line stack and spread screen act the
current line. Previous cancents of line 15 is

v lost.,

[character commands]

CTRL Left

CTRL A

CTRL Q

istring commands]

CTRL Dowan

CTRL Up

Deiete the character under the cursar moving the
rest of the line to the left. Other lines are
unchanged,

Insert a single space at the cursor. The rest of
the line is moved to the right and the 1last
character lost.

Enter insert mode. All subsequent characters are
inserted at the cursor and the rest of the line
and the cursor are moved one space to the right,
The rightmost characters drop cff the end of the
line and are lost. Insert mode terminates with
the entry of another CTRL Q or ESC code.

Find string. Ueer is prompted far search
argument. To use the same string argument as on
previous search, just prese <enter> in response
te the prompt. The sezrch may be interrupted by
pressing any Key,

Find and replace string. User is promted for
search atgument and replacement string. The
replace string must be the same length or shorter
than the search string. Ta use the arguments for
subsequent search and replace- operations, just
push <enter> 1in response to the prompts. The
search,/replace nay be intizrugted %y presalng any
key,

R a3

*-68000 ASSEMHLER

—-— L e e e e e P i eper e I o

Effectivse Hotorola meaning Bxanple
Addreas : .
Dx . Data Register Direct o ol
AY Address Register Direct : A2
{Ay) Address Register Indirect ' {al)
diAy] Address Register Indirect with displacement 6 dial}l
{Ayl+ Address Register Indirecr with Postincrement (A2}+
-{Ay) Address Register Indirect with Predecrement ~[A2}
diax, Rz} Address Register Indirect with Index 10 d{Al, 20}
1 immediate [
AAXK , Absolute short {source) 16 ,
. XXAX Absolute short (destination) ., 1000
Register List ’ i AG DO |}

[Rx..Ry..l

4.2: ASSEMBLER MNEMONICS

The 68X nmemonics are {isted below in alphabetical order with

their FORTH eguivalents. Note that the presence of absence of

commas and spaces is essential to avoid syntax errors, The error
checking is not foolproof., Operand size 1s denoted by adding L.

W. or B. before the opcode, :

Eq: (SP)+ AH L. MOVEA,

If no si1ze is given, W. Will be assumed unless the instruction
fequlires orherwise, - B

Motorola Asseabler FORTH Aszembler

ABCD Dy, Dx Dy Dx ABCD,
ADD <ga>», Bn <ear Dn ADD,
ADD Otn, <eaX> D <ea> ABD,
ADDA {gai, An - <ear An) ADDA,
"ADDIL f1<data», <ea> <data> & <ead> ADDI,
ADDQ §<datar, <eaz - <datar § <ea> ADDQ,
ADDX Dy. Dx By Dx : ADDX,
AND <ga>, Do [Av) ~i{&x]} . AND,
AKD Pr, <ea> <gay Dn AND,
ANDI p<data>, sea> <data> # <ea> ANDI,
ANDI §<data>, CCR <data> 3 CCR B, CANDI,
ANDL $<data>; SR <data> § SR ANDI,
ASL® Dx., Dy - ‘Dx Dy . : ASL,
ASL . #<data>, Dy T <data> 4 Dy 3 ASL,
ASL <ea> . <ea>) ASL,
ASR D, Oy - Lx Dy - ASR,
ASKR ¥<data>, Dy . <data> $ Dy _ ASR,
ASH <ga> . ocead . . ASR,
Heo <label> : <labal> Bce,
BRA —<label> <labal>» BRA,
BSR <iabel>» <labeld B3R,
BCOHG bn, <ea’ Dn <ead> BCHG,
BCHG #<data>, <ea> {data> 4 <ea> BCHG,
BCLR Dn, <ea> Dn <ead> BCLR,

- 2 - .

COMPUTER OME PORTR

BCLR
BSET
BSET
BTST
BTST
CHK
CLR
cump
CHMPA
CMPI
CHMPM
DBce
DIVS
DIVY
ECR
EORI
EORI
ECRI
EXG.
EXT
JMP
JSR
LEA
LINK
LSL
LsL
LSL
LSR
LSk
LSR
MOVE
MOVE
MCVE
MOVE
HUVE
MOVE
HOVEA
MOVEM
MCOVEM
MOVEP
MOVEP
MOVEQ
MULS
MULU
HETD
NEG
NEGH
NQP
RoT
OR
OR
GRI
ORI
ORI
PEA

f<datad>, <ea>

On, <ea>

$<data>, <ea>

Dn, <ear

f<data>, <ea>

<ea>, Dn

<ead

<ga>, Dn

<ea>, An

f<data>, <ead>

{Ayl+, [(Ax)+

bn, <label>»

ea», Dn

<ea>, Dn

bDn, <ear

t<data>, <ea>

tcdata>, COR

i<data>, =R

Rx, Ry

bn

<ead>

<ea>

<ea>, An

An, #<data>

Dx, Dy

t<data>, Dy

<ear

Dx, Dy

t<datar, Dy

“Bar

<ear, <ea>

<gea>, CCR

‘ear, 5R

SR, Zear>

An, USP

Use, An

cga>, An
<reg. list>, <ea>
<ea>, <reg. list>

Dx, dlAy!

diAy) Dx

t<{data>, Dn

<ear, Dn

<ea>, Dn

Near

<eak

<ear

<ear

<ea>, Dn

Cn, <ea>»
$<dacar, <ea>
fvdata>, CCR
$<data>», SR
<ea>

<data> § <ea>r
Do <ead
<datar § <sa>
Bn <ea)

.<data> § <ea>

tea> Dn

<ear

<ea> Dn

<ea> Anh
<data> § <ear
{Ay)l+ (Ax}+

bn <label> PBecc,

<ea> Dn

<ga> Dn

<ea> Dn

<data> ¥ <ea>
<data> § CCR B,
<data> ¢ SR

Rx Ry

Dn

<ead

<ea> -

<ea> An

An <data> ¢
Dx Dy
<data> ¥ Dy
<ear

Ox Dy
<data> ¢ Dy
<eay

<ear <ear
<ear

Lear

{ear

An

An

<gar An
creg. list> <ea>
{ea’ treg. list>
Dx di{Ay)
di{ay} Dx
<data> ¥ Dn
<eax On
<ea> Dn
~td

<ea>

<ea’r

<ear

<ear bn

Bn <ea>

<data> # <ea>
<data> # CCR B,
<data> # SR -
{ga>

- 21 -

8CLR,
BSET,
BSET,
BTST,
BTST,
CHX,

CLR,

cHpe,

CMPA,
CMPI,
CHbM,

bIvs,
DIvy,
EOR,
EGRI,
EORI,
EQRI,
EXC,
EXT,
Jup,
J5SR,
LEA,
LINK,.
LsL,
LsL,
LsSL,
LSRR,
LSR,
LSR,
MCVE,
MOVE,
MOVE,
MOVE,
MOVE,
MOVE,
MOVEX,
MOVEM,
" MOVEM,
MOVEP,
MOVEFR,
MOVEQ,
MULS,
MULL,
Hech,
NEG,
NEGS,
ROP,
NOT,
OR,
oR,
ORI,
CGRI,
ORI,
PEA,

i
L -

68000 ASSEMBLER

vy kLD Ol

1S

PRI I

LY

RACTE

Tu

oyt

T

© 68000 ASSEMBLER

4.8: DEDICATED FORTH REGISTERS

FPORTH 68000 preservatxoa rulas

RP A7 Return stack pointer, preserved
acroas PORTH words,

sp Ab Parameter stack pointer, preserved
across FORTH words. -

BP AS Base pointer. Contains absclute starting
address of FORTH., DO ROT TOUCH.

1P Ad Interpretive pointer - PORTH s own

internal program counter. Preserved
across FORTH words except Lo Sause
a branch.

as D7 Cifset register with high word set to 0.
Used by PORTH with BP ta form an actual
32-bit addreas from a lé-bit logical
address. DO NOT MODIFY THE HIGH WORO.

W [+1 Sometimes output from REXT. May be altered
before jumping to NEXT,

All other registers may be freely used by assembler routines, but
these registers may {will) be altered by QDCS system calls.

- 26 -

CHAPTER FIVE

FORTH —83 Gilossary Notation

Order
1

The glossary definitions are listed in ASCII alphabetical order.

Capitalization

Word namcs are capitalized throughout,

Stack Notatiop

The stack parameters input to output from a definition are
uuscribed using the natacion

before -~ after

r
before stack parameters before execution
after stack parameters attcr exacution

In this notation, the top of the stack is to the right. Words may
also be shown in context when appropriate.

Uniess otherwise noted, all stack notation descfibes execuytion
time. If it applies at compile time, the line is followad by:
{campiling) . .

Atrributes

Capitalized symbols indicate attributes of defined words:

C The word may only be usad during compilazion of a colon defipnition.

1 Indicates that the word is IMMEDIATE and will be executed during
compilation, unless special aetion is taken.

M This word has a potential multiprogramming impact.
] A user variable,

- 27 -

: ' CHAPTER SIX

Microdrive, Window, and Device Interface

As QPOS treats all devices in the same way, this section applies
not just to microdrives and other tite-oriented devices, but to
any other devices, e,q. serial ports, that are supported by QDOS.
In addition, the same techniques are used for windows (output
only}, and consoles linrput and outpat),

Computer One FORTH uses the file handling interface standarad
establiched by Laboratory Micrasystems, Files are handled through
file control blocks. A File control block consists of a control
area, and a 126 byte data buffer area. The layout of the comtrol
area varies between operating Systems, but the data pbuffer jiu
constant, and is used Ly the READ-SEQ, WRITH-SEQ, READ-RANDOM, and
WRITE-RANDOM words. For this 1mplementation the control aren is
64 bytes long, and its organisation follows that of a microdrive
header up to the end of the [ile name. A file contrel tlock is
established and named by the word FCB, <.g.:

FCB FRED

*As each file control bloeck is defined, it is ailocared space,
When record cperations are performed referencing a gaven file
contrsl block, the baffer address is rveturned if the operaticn 1is
successful,, otherwise 0 ig returned. The nember of file countrol
blocks {(ard hence the number of cpen files) is limited only by
dictignary Space and QDOE, :

The status code returned by all [ile cperaticons is a ¢ for
Successful operations, and a standargd QLOS error code i1f the
operation failed. The status code returned by record operations
_is either the disc buffer address for success, or 0 for failure,
The error code of the last operation is contained in the variable
DISK-ERROR. .

- 30 -

6.1: FILE WORDS

BGET -
Used in the form:
BGET <filename>
Loads and relocates a binary image saved using BSAVE.

BSAVE -—
Used in the form: S
BSAVE <word-name> <filename>.

Before executing BSAVE, the socurce code must be compiled
TWICE. <word-name> refers to the first word in the source
code that has been compiled twice, A binary image of the
compiled code will be saved as <filename>, ‘This may be
reloaded by BGET which will relocate it.

?BUPFER~ADDR fcbaddr == digk-buffer-addr
Given the address of a file control block, the address of
the relevant disk transfer buffer is returned.

CLOSE-FILE fcb-address -— atatus code :
Close the file. Micredrive directories will be updated,
CONTROL~-PCB - {defining}
- fchb address {execution)

Used in the form CONTROL-FCB <fch-npame>

DELETE-PILRE feb-address =- status-~code
Delete the specified file, and update the directory.’

DIR) -
Used in the form:
_ DIR <medium namep>
lists a directory of the selected files.
DISK~ERROR == addr .
Variable containing the value of the last file related
error (or success) to have taken place, :

FCB - - {defining)
== fchb-address (execution) .
Used in the form PCB <fcb-named>. Aliccates and initialises
a file control block and disk-buffer, Subsequent execution
of the contrel block name will leave the address of the fcb
vontrol area on the stack.

FCRADDR awe IS-I0Q

Sets up the device whoose fcb addr is on the stack, as the
current input/ output channel.

- 31 -

"

T CHAPTER SEVEN

FORTH Multi~-tasking

CHAPTER 7: FORTH Multi-taaking

FORTH contains a simple multi-tasker which allows you Lo execute up
te ten background tasks concurrently with the foreground task. The
background tasks are given control in a round-robin manner whenever
the foreground task is waiting for input from the keyboard.

By foreground task, we refer to any task which was invoked by siaply
entering its pame followed by a carriage returm. The foreground task
has ultimate control of the keyboard, video display, and other i/o.

Background tasks designed by the user must obey certain rules in
erder for the system as a whole to perform preoperly:

l. Each background task must be self-contained. It must leave the
Farameter and return stacks dalanced, i.e. no extra values may be
censumed or left behind. If any information must be maintained
from one invocaticn to another, it snouwid be kept in a varjable.

2. A background task must execute to completion in a reascnable
length of time, otherwise the user will motice that keyboard
response is delayed. If all the necessary work cannot he done
quickly enough, it should be partiticned into several tasks which
pass data through variables, :

3. In general, background tasks should not attempt to access i/o
devices.

The Eords_uﬁed'to control multi-tasking are:

KILL . ' ' —
Used in the form: KILL <name> - removes a task fram the
background task list, :

KILL-TASES = = = ~=
Kills all the background tasks,

srm e oo C - N -
Used in the form: START <name> - adds a task to the
background task list. Up to tem may run concurreatly.

- 34 -

COMPUTER ONE FORTH

PORTH~8] REQUIRED WGORD SET

GLOSSARY ONE:

FORTH—83 Word Set Glossary

This glossary lists the ainimal set of words required to meet the
FORTH-81 standard. i

] 16b addr -~ 79 “store”
lép is stored ar addr

] +dl == +d2 79 “sharp*
The remainder of +dl divided by the vatue of BASE is
converted to am ASCI! character and appended to tne cutput
string toward lower memory addresses.+d2? is the quatient anpd
is maintained for further processing, Typically used petween
¥ and §5.,

[23 32b -~ addr sn 79 "sharp-qreater®
Pictured numeric output conversion is ended dropping 32b. addr
is the address of thne rasulting cutput string. +n is the
number of characters -in the ouzput string. addr angd +p
together are suitable far TYPE.

#s +d == 0 O 19 ¢ "sharp-s*
+d is converted appending each resultant character into the
pictured numeric output string until the quotient (see: #} is
zere. A single zero is added to the output string if the
number was initially zero. Typically used between <{ and >

{TIB == addr) u,83 "numbar-t-ji«h®
The address of a variable containing the number of bytes in
the text input buffer. #TIB is accessed by WORD when 8LE isg
zere. {10..capacity of TI8}}

‘ == addr M,83 "tick®
Used in the form:
* <name>
addr is the compilation address of <name>. An error condition

exists if <name> is not found in the currently active seagrch

crder.
{ - I,.M,83 "paren” N
-- (compiling)
Used 10 the form:
{ ccel
The characters ccc, delimited by) (closing parenthesis}, are

considered commenta. Comments are not othervise processed. The

- 1% -

i Rt e R L R

e

ATTACH -
Used in the form ATTACH <fcb-name> file-~spec>. Aliocates

4nd initialises a file control block, sssociates the control block
with the given file, and opens the file. Por example

attach fred scr_400x300x50x20
fred channe! is-work cla

will open a windoew with the given parametatrs, make it the work
channel and cleat the window,

SET-FILE -
Used 1n the form SET-PILE <fcb-name> <file-apec>. This is.
the same as ATTACH, except that the fils is not opensd by the word,

FRINTER=-15 -

Used in the form PRINTEN- IS <file-spec>. Opens the given
tiie to pe used by the PRINTER word. For example, if u printer is
sttached to the serial port ser! than to peint screen 7 of thae
current acreen file you would use the following ¢~

printer-is ser} :
printer 7 list ceonsole { print screen 7 and then reset
output to console)

Information on the exact specification of the serial port end
other devices can be found in the QL User Guide under the keyword
‘devices .

D+ wdl wd? -~ wd)
wdl is the result of adding wdl to wdi,

pe d u == g
Multiplise a double word by sn unsigned word to give a
dockbie word result.
L
=F d u == 4 [
Divides a double word by an unsigned word to give a double
word result,

DELETR —
Used in'the form DELETE <file-spec>. Dalates the specified
file. e.g DELEZTE ndvi_test_scr.

EORMAY - :

Used ip the fors PORMAT <device-apec>. Porsats tha
specified device. 2.g. FORMAT dv2_forthfiles.
Creating and usimg scresn files

To create & wcreen file called, for example, miv2 test_scr, use
the fellowing

FCB scr ' scr FILERME mdv? test scr
BCr MAKE-FILE scr CLOSE-PILE

Hote that the file must be closed before you can use tha word
USINC to make it the current acreen file for use with the editor,

39

To ensure that the most recent edits on a screen file have peen
written to microdrive cartridge before resetting the aystem use
the word USING with nc pacrameters. This will close and reopen the
current screen [lle, ensuring that the last updates have been
written to tha cartridge.

Multi-Tagking

When an application program is using multi-tasking, the foreground
task, i.e, the one prompting for iaput, should use the word KEY
and nat EXFECT, since EXPECT will halt all background tasks while
it is wailting for input.

Ruonning stand aloos programs

When tha PORTH system ib eterted up it uses a well-known PORTH
location, Hex 18A, to find the code to start sxecuting when it has
finished initialisine the sywrtss. You can =—aczs FIIZ e
appiicacion to be automstically run oo startup by changing the
valus in this location so that it will executs & cowpiled FORTH
word, For exasmple, supposs we wish to run the NIBBLERS gqame &3 3
stand alone progras., First wa bave to losd and compile the source,
then setup the location 15A, save the current mamory imaqe xznd
alter the boot file so that it will use tha aew image on startup,

before setting up the stand slone program we could use PORGET to
farget words that will not be raquired by our application.

using mdvl_forth_scr { thie bas the NIBELERG source)
22 load ! load and compile the source)
" oibbiers hex 1OA 1 [6at up the start up location

- with the NIBBLERS word |
save mdvZ_oibblers { save the current image)

Now 1f we copy the BASIC boot file onto the micro drive with cthe
NIBBLERS image and alter line 40 to give it the name of the
NIBBLERE image, when this image.is booted it will run the MIBBLERS
gamse, _

For experienced PFORTH users all the guarantesd l.cations in the
PORTH systea sTe given below. All values are given in hex.

al12¢6 initial vajue of €TIB
0128 initial value of WARNING
0124 initial value of PENCE
£i2C initia)l valus of OP

012E ipitial value of VOC-LINE

0540 vactor for EMIT

D142 vector for ERY

Dled veactor for FTIRHINAL

D146 vactor for : TYPE

0len vector for : GoToXy

D14 vector for CLEARSCREER

0l4c vector for CLRYOS

fi4E vactor for CLEEOL.

o172 vector for BLE~REMD

0174 vector for ME-WRITE :

0176 veoctor for . [g1 o] Tu]) _ -
&1 verter for . OAN-sem ' :

*a

TR A

PR P T N L TP N TN

W S

e

T - BE: addem MR

.

* PORTH-8] REQUIRED WORD SET

wl w2 == c,1,83 “do"
== sys lcompiling)
Used in the form:
DO ... LOOP
ar
DO ... +LOOP Begins a loop wnich terminates nased an
control parametecs. The loop index beqin at w2, and terminatas
based on the limit wl. See LOOP and +LOOP for details on now
the loop {5 terminated. The loop 15 aiways executed at luvast
ange, For example: w DUP DO ... LOOP executes 65,536 times,
5¥s 15 balanced with 1ts correspanding LOOP or «LOOP.

An error condition exists if 1nsufficilent space is avatlable
‘wf at leasr three pesting lovel: .

DORS > == addr C,I,81] "does*

== lcompiling)
Def:nes cne execution-time action of a word Jreatud by
high-level defining word. Used in the form:

iosnamex® ... <creacer» .. DOQES» ...
and then
<namex> <name>
where <zreate’> 1s CREATE or any udser defined woutd wnien

wxecutes CREATE . -

Marks tne termination of the defining part of the dnfsnlnq
word <nameai> and then bzgins the defimition al tnv
exegution-timz action {or words that will later be defined by
<namex>, When <name> 15 later execited, the address of
‘pama. ¢ parameter {ield is placed on the stack and then tue
sequence of words petween ODOFS> and : are eoxcoruted,

DROP l16b =-= 79 "drop®
i%p 1s removed from the stack.
16b -- léb 1&b 79 “dupe*
Duplicate l6b,
ELSE - c,£,79 "elga”

sysi -- s5ys2
Used 1n the form:

flag IFf ... ELSE .., THEN
ELSE executes after the true part following IF ELSE farces
axecution to continue at just after THEN . sys! is balanced
with 1ts correspoading IF . sys?Z is balarced with its

corresponding THEN . See; IF THEN

EMIT 16b =~ M,83 "omit®

The ie¢ast-significant 7-bit ASCII character 1s displayed.

EXECUTE addr == 79 "execute”

The word definition indicated by addr 15 execurted. An erzor
condition €xi1sts if addr is not a compilarinnm andress

COMPUTER ONE FORTH CGMPUTER ONE FQRTH

EXxir -— c,79

EXPECT addr +n =~= M,81]

PLOSH - M,83 '

FORGET - M,81

FORTH-8] REQUIRED WORD SET

“exit®
Compiled within a colon definition auch that when executeq,
that celon definition returns control to the definition tna:
passed control to it by returning control to the return PNt
sn top of the return scack. An error condition exists i1f che
top of the return stack does not contain a valid Yeturn poLint,
May noc be used within a Do-loop.

“expect®

heceive characters and store each LOto memory. The transfer
begins at addr proceeding towards higher addresses one pyte
per character until either a "return® is rece:ved or uncil! .p
chacacters have been transfered. No more than +n
will! be srared, The “return® is not sicred 10 memory., o
Sharacters are received af transfered 1f wn is Tero. Al
characters actually received and stered :into MEMSYy wili! 5e
displayed, <ith “Zeturn- displaying as space. See: 3PaN

CharacLiers

LL addr 4 b -~ 93 flile

u pDytes of memory oeginning at addr are set Lo HBD. Ho astion
Ls taken if u i§ zero,

FING addri -- addr2 n 83 "finde e

44dri 1s the address of a counted string. The strina conna.one
a word name toc pe located i1in the CUrrently aztive sSeqr-n
arder, If tne word is not found, addr? is the string addri,
and n is zero, If the word is found, addr? is the compllaticon
address and n is set to one of two non-zers values, If tne
word found has the immediate attribure, n is5 set to one. If
the word is non-immediate, n is set to minus one (true),

"flush®
Performs che function of SAVE~BUFFERS then deassigns all block

buffers. (This may be useful for mounting or changing mass
storage media), ’

“forget*
Used 1n the form:

FORGET <nams>
1! <name> is found in the compilatz:on vocabulary, delere
¢name> From the dictiomary and all werds added tg tne
dictionary after <name> regardiess of their vocatulary,
Farlure o find <name> is an error condition, An error

conditien alsc exists if =he compilation vocabulary s
deleted,

FORTH - g1 *forth*
the name of the primary vocabulary. Execution replaces the
first vocabulary in the search order witn FURTH . FORTH ;s

1aitially the compilaticn vocabulary and the first Vocabialary .
1a the search order. New definitions become opart of the FORTH

fwbowuiuly warel o QLITErent ¢ompilation vecabulary 13
established. See: VOCABULARY

FORTH=-83 REQUIRED WORD SET COMPUTER ONE FORTH

PAD ~= addr 83 “pad"
The iower address of a scratch area used to hold data for
intermaedlace processing. The address or contents of PAD may

change and the data lost if the address of the next available
dicticnary location is changed. The minimum capacity of PAD is
84 characters.

PICK +n -=- 16b B3 "pick®
I6b 15 a copy of the +nth stack valua, not counting +n itself.
{0..the number of elements on the stack-1}

0 PICK is eguivalent to DUP
I PICK is equivalent to UVER

QEIIT - 79 "guit®
Clears the return stack, sets interpret state, accepts OSw
input freom the current 1nput data device, and hegins text
interpretation. Ho message 15 displayed.

R> -= l16h c,79 “r=-from®
16p is removed from the return stack and transterred to the
data stack.

RE -= 16b c,79 © "r=fetch®
16k is a copy of the top of the return stack.

REPEAT -- £,1,79 "repeat®

sys == {(compiling)
Used 1o the furm: .
BEGIN ... flag WHILE ... REFEAT

At execution time, REPEAT continues executicnh £o ju4at aliers
the corresponding BEGIN . sys is balanced with i1ts

corresgonding WHILE | Soa: BEGIN

ROLL o - a3 “roll"®
Tha »nth stack value, not counting +n itself 1s firsc removed
and then transierred te the top of the stack, moving the
remaining values into the vacated position. (0 .. the number
of elements on the recturn stack=-i}

2 ROLL is equivalent to ROT
0 ROLL is a null operation

ROT 16k}l 16h2 16b3 =-- 79 "rote”
leb2 16b3 16bl
The top three stack entries are rotated, bringing the deepest
o the top.

SAVE-BUFFERS - K,79 "save-puffers*®
The contents ©f all block buffers marked as UPDATEd are
wriLtten to therr corresponding mass storage blocoks., all
butfers are marked as no longer being modified, but may remaln
aszsigned.

COMPUTER ONE FPORTH PORTH-83 REQUIRED WORD SET

SIGN n =-— a3 “sign*®
If n is negative, and ASCII "-° (minus sign) is appended to
the pictured numeric output string. Typically used between i
and #>

SPACE - M,79 "space”
Display an ASCII space,

SPACES +tn —-= H,79 “spaces”
Display +n ASCII spaces. Nething is displayed if +n .s zera.

SPAN == addr 0,83 "span*
The address of a variable containing the count of characters
actually received and stored by the last execution of EXPECT
Sea: EXPECT

STATH == addr u,79 "srate”
The acaress of a vuriable containing tne sempilation stare. A
non-zera content Lndicates CoOmMPliailon 15 nCCuLrring, Lut tne
value itself is system dependent. A standard rrogram may ot
modify tnis variable.

SHAP 16bl 162 -- 16b2 lébl 7% "swap”
The Ton Iwo itagk @niTies drfe axcnanged.

THEN - c, 1,79 “then®
i¥s == (complling)
Jdsed i1n =—he farm:

flag If ... ELSE ... THEN
cr
fiag IF ... THEHN
THEN 15 the point where execution continues after ELSE . or [P
when no wl>E 1s present. SYs 15 balanced with 1cs

correspocniing IF or EL3E ., See: IF EL3E

TIB ~~ addr a3 fe=i-p”
The 3ddre<ss of the text input buffer. This buffer 1s uUsed co
Noid cnaracters when the input stream is cuming from the
current input Jdevice. The minimum capacity of TIS is 84
characters.

TYPE addr +n =-- M,79 "type*®
+n characrers are displayed from memory beginning with the
characrter at addr and continuing through consecut:ve
addresses. Nothing 1s displayed if +n is zero.

u. 0 e M,79 "u-dor®
u 1s cisplayed as an unsigned number 1n a free-fleld format.
U« ul w2 -- flag 83 "u~-less-then*
flag is true :f ul 1s less than ul.
M ul wi - ud 83 *u-m-rimes”
ud is the unsigned product of ul times ul. All walues and

arithmet.s are Jnsigned,

DOUBLE NUMBER EXTENSIONS

COMPUTER GNE FORTH

—

GLOSSARY TWO:

FORTH—83 Doubia Number Extension Word Set

exXtensions to

These are the double-number (32-bit] word set

FORTH-83:

21 j2b addr -- 1% "two-atore®
i?p 15 stored at addr.

2B addr =-- 32b 79 "two-fetch®
iib is the value at addr.

2CONSTANRT 32b -- M,83 *two-congtant®
A defiring word execured in the form:

J2b 2CZ0MSTRMT <name>

v.eates & dictionary entry for <name> so that when <name> is
Later gxecuted, 32b wili be lefs on the stack.

2DROP 32b == 5 “two—-drop*
J2p is removed from the stack, -

204p 32h -- 12b 32b 79 “two-dupe”
Dupligave 32op.

Z0VER 12bi 32b2 =--

32pl 32b2 32b3 79 *two-over®

iZpi 1s a copy of 12pi 1

2ROT 32bl 32b2 32b3 -~ 79 "two=TOCE"

32b2 32b3 32bt

The top three double numbers on the stack are rotated,
bringing the third double number to the top cf the stack.

~ 25WhP i2bl 32K2 -- 1202 32Dl 7% " two-swap®
The tep two double numbers are exchanged.

ZVARIABLE - M, 79 "two-variahle®

4 defining word executed in the form:
ZVAREIABLE <name>)

A dictionery entry for <name> 18 created and four bytes are
ALLOTted in its parameter field., This parameter field is to
be used for the contents of the variable. The application 1s
responsible for initializing thne contents of the variable
whizh .t creates. When <name> 15 later executed, the address
of its parameter field is placed on the stack. See: VARIAHLE

- 50 =

COMPUTER OKE FORTH

DO=

D2/

D=

DaBS

DAY

DEIN

DOUBLE KUMBER EXTENsSIONS

wdl wid?2 -~ wd3 79 *d-minus"

wd3 15 the result of subtracting wd2 from wdl.

d == M, 79 “d-dot*
The abvsciate value o0f d is disglayed 1n a free fieid format.
A leading negative sign is displayed if d is nugative.

d +n -- M,6) *d-dot-r*
d is convercted using the value of BASE and then displayed
right aligned in a fieild +n characters wide, A leading minus
sign 1s displayed if d is negative. If the number of
characters required to display d is greater then +n, an error
condition exists,

wi -- flag [*d-zero-equals*
flag 15 zrue :f wd is zero.

dl -- d2 B3 "d-rwo-divide®
d2 is the result of dl arithmetizaily shifted one bit. The

sign 1$ 1ncluded in the shifr and remains unchanged,

wdl wid? ~- flag 81 "d-equal”

flag 15 true of wdl equals wd2

g -~ ud 79 "d-absoiute*
ug 15 the apsoliute value of d, f d is -2,147,482,648 then .G
1s the saved value,.

dl d2 -- 43 79 "d-max"
d3 ic the greater of dl and 42

4l d2 -~ 43 79 . *demin®
€3 1s tne lesser of 41 and 42 \

udl ud2 -- flag 83 "d-u-less®

Du<

fiag i: true :f udl is iess than ud2, Both numbers are unsigred.

- 5] -

.CONTROLLED REP. HWORD SET COMPUTER ONE PORTH

GLOSSARY FIVE:

FORTH—-83 Controilad Raeference Words

This giessary Lists extra FORTH-B3 words which are not neccessary

for FORTA-B1, yet are present and defined in Computer One FPORTH. .

The use of these words 1s however controlled by the FORTH-83
standard.

> - 1,M,79 "next-block"
=~ icompalingi _ _
Continue interpretion on the next seguential block, May be

used within a colon deiinltion that crosses a hlock boundary.

.R n o0 = n,a3 "dot-r*®
n 15 converted using BASE and then displayed right allgned in
4 f121ld rn cpnaracters wide. A leading minus sign is
dispiayed 1f n 15 negative. If the ausbar of characters
required co display n 15 greater than +n, an error conditian
2XLSES.

Bl -- 32 79) “b-1"
Luave the ASCIL crnaracrer value for space {decimal 12).

BLANK addr u -~ a3 *blank® .
4 ovetes of memory beginning at addr are set to the ASCLI
cnaracter value for space. Na action is taken 1f u is zero,
§

c, 16b =~ 43 _ "c=comma " 3
ALLOT one byte then store the least-significant 8 bits of 1éb
at HERE l-

Duxp addr u == M,79 *dump*

List the contents of u addresses starting at addr. Each line
+©of values may be preceded by the addrass of the first value,

EDITOR - &3 *editor”
Execution replaces the first vocabulary 1n the searcn order
=1th the EDITOR vocabulary. See: VOCABULARY

EMPTY-BUFFBRS - M, 79 "empty-hbuffers”
Desssign all block buffers. JPDATEed blocks are not writtepn
to mass stofage. See: BLOCK

BND flag -- C,1,79% "end*

5ys ==

A synonym [or JNTIL .

COMPUTER ONE FORTH

CONTROLLED REF. WORD SET

ERASE addr u -~ {compiling) 79 “erase”

HEX

INTERPHEY - M .83

u bvtes of memory beginning at addr are set tg zerc, Na
action is5 taken 1f 4 15 zero.

- 79 ' "hex*
Sets the numerlc 1nput-OULPUt Conversian base to sixtesn.

"interprec”
Begin text interpretation at the character irdexed T, Une
contents of >IN relative ta the block number cortained

i BLEK,

“entinuing unt:il tne 1NpUt Stream is exhausted. I{ ik
céntalns zero, interpret characters fram tne text LnLLE
buffer.

LIST a - M, 79 "list"
The contents of screen u are displayed. 3CR 1s se: =g 4.
See: BLOCK

CCTAL -- a3 "actal"
5L the numeric inpuc-output base to 21gnt.

CPFSET == addr u,83 "offsec”
The address of a wvariable that ‘oniains the wliset add v to
the plulx number on the stack Ly BLOUJK o1 BUFFEK tu une
Sny atisal physical olock numoer. .

QUERY - M, 83 . ‘gquery"”

1]

Craracters are received and transferred LTS memory area
addressed by TIB . The transfer term:inates when eithe:r g
"returr” 1s received to the number of characters transferrad
t«aches the size of the area addressed by TI8 . The value: of
>IN apd BLE are ser to zere and the value of tTIB 1s ser to
e valie of SPAN WORD may be used ro aCCept 28Xt ITom This
culfer, Sea; BYXPECT

-~ adar u,79 "s=c-r*
Tre address of a variable morraining the number of the sc-een
most recently LiISTed,

-~ addr 79 "s-p~ietch"
addr is the address of cthe top of the stack just pefore 5pd
was executed.

u N == M,B3 "u-dor-p"
4 15 canverted using tne value of BASE and then display<a as
3n unsigned numpber right aligned i1n a fieaid +n characters
wide . If the number of characters required oo discliay u s
Gfeater than +n, an error conditicn exiscs,

- 55 -

MISCELLANEQUS WGRD SET COMPUTER ONE FORTH

GLOSSARY SEVEN:

FORTH—83 QL Other Definitions

These are mlscellanceous wurds present in COmMputul Une FOATH.

1L l6b & =-- "srore-1"

16b 15 stored at 4. See: ! ¥

=2 -1 1 2 13 -—n
These small numbers are defined as constants as they are used

sa often.
*dot=-c=p-u®

LCPUO - .
{i.e, B8008} from CQRGIN+IZ2H encoded

Prints the processOor name
as 32 birc, base 36 integer.

] addr -- *dot-f-c-b"
addr is tne address af the file-carcrol-block. Displays-fully
qualified file name on the selected oucrput device.

3DROP 1601 16b2 16b1 -- *three-drop”
ieébl 16b2 lébl are removed from the stack.

4DROP izbl 32b2 ~-- "four-drop”
32bl 12bl are removed from the stack.

>BODY addrl =-- addr2 *to-body"

addr? is the parameter field address corresponding to the
compilation address addrl,

>LINK . addrl -~ addri "to-link®
“addr2 is the name field address corzesgonding to the

campilatior address addrl.

>NAME addyl -- addr? *to-name "
addr2 is the name fi1eld address correspending Lo the

compilation address addl.

COMPUTER ONE FORTH MISCELLANEQUS WORD SET

D0 vl w2 -~ ‘query-do®
-- sys (compiling)
Used in the form:
LG ... LOOP

or
by ... +LOGP
Bzgins 2 loop which térainates on control parameters. The loop
vegins ot wld, and terminates based on the limit wi. I1f wil
equals w2 the loop 13 not executed. See: DO

PTRRMT MAY, -~ (lag “gquery-terminal”
Perrorms a rest of the keypcard [er actuatien of any key. A
true flag ngicates actuation, and will remain true on eny
number of calls until KEY in invoked to read the character.

aL d -- 1l&b “faetch-1"

16b 15 the value ac 3. See: @

ASM "load assembier”™
Loads the FORTH assemcler. Use ASSEMHLE to switch to assembler

vocabulary.

BIMARY -— "binary®
Set the numeric LOPUL-CUtpUL CODVEIS1OR Dase tO twd,

S0pY> addrl -- addrl Yfrom-body*
1ddre¢ 15 the compilation address correspendlng to the
carameter field adaress addrl.

BYE "bye®
Exit FORTH and renvar QL BASIC.
clL 166 d =-=- "e-store-i*®

The ieasc-saignifizant 8 bits of 16b are stored (nto the cyre
at d. See: C}

CeL d -~ 8b “c-fatch-1®
8b is tne contents of the byte at d, See: Cd -
COMSOLE -- “console®

Make tnhne system keypoard and VOU the principal cuput device.
Sae: PRINTER

CHROVEL dl d2 n -- *c-move-1"
Works like CMOVE , but aliows string moves anywhere i1n the
68008 addressing space.

CoLD "cald*
The cold start procedure te adjust the dletionary polnter to
the mipimum stzndard and reset via ABORT. May be calied from
the keybcard to remove application programs and restart,
d --d "d-iitcrai®
d -- lcampliing)
I{ compiling, compile a double numper into a literal. when
laver executed the doucle number d will be ieft an thne stack.

- 59 =

' GRAPHICS & SOUND WORD SET COMPUTER ONE FORTH

GLOSSARY EIGHT:

FORTH-83 QL Graphics, Sound and Floating Point Word Set

All the graphics words may be assumed to work on the current’

WIRK window. A window 13 iLreated by LGS 4s a deviece which has Lo
be opened. First create a file contral block using FCB - then give
it a name using FILENAME - then open it using OPEN-FILE, e.g. FCH
FRED FRED FILENAME CON_448x180A32x16_123 FRED OPEN-FILE .

OPEN-FILE returns an error code {9 for successj. The error codes
are ihose normally recurned by QDOS. For more details of opening
and vlosiny files, and otnet device~related words, see the section
on microdrives and devices, Remember, QDOS treats all input and
QUTPLT 1N the same way,

Ta switen between windows use the words WORX andIS-WORK. Thesa
words set and retorn tne channeg-id codes for the window used By
the graphics commands. Use the words QUTPUT and 15-QUTPUT for
Switching che output window and use the words I[NPUT and IS-INPUT
for switchirg the input cnannel. NOTE tnat default channel-~id for
all tnree crhannels i3 zorw,

FLOATING POINT WORDS

Analaloques of the normal foreq stack and maths operations are
provided for use withn fitoating point numbers. These words are:

Fe F- ©* P/ FABS FNEG FDUP FROT FDROP FSWAP
The following other floating voint functicits are also available:

TESING FCOS PTAN PUOT FASIN FACOS FATAN FACOT FSQRT FLN
FLOG FEXP Fes,

Coenversion te and froe is achieved using TRUNC ROUND and FLOAT.

TRONC fn == n
Truncates a floating paoint number ta an integer.

ROUND fn == o
Canverts a floating point number te the Redrest integer,

FLOAT n =~ fpy
COnNverts an integer ta llosating point,

‘(}Z'

Co-- ST pwapee— TR T e

CCMPUTER ONE PORTH GRAPHICS & SOUND WORD SET

F# { === [compiling} ; == i
Used in the Fore cap gl ; fn [interpreting])
F# 1.456
This word generates a floating point nupber which is left on
the stack or compiled depending onp whether FORTH is

FYIN { === fn true / falsme]
Used to take a number from the input and Attempt to convert ;e
Lo a floating point number, If conversion fails, no number 1s
returned.

F. L fp ~== }
Prints fn in the same format as used by SuperBASIC,
13

GRAPHICS AND SOUND WORDS
ROTE: The FOR?& graphics words CIRCLE, CURSOR, ELLIPSE, LINE 4ng
POINT all require floating point parametars. (See Section 2.7,

ADATE n ow=
52t tne clock with the value n seccnds,

ADJUST-CLOCK n ==
Adjust the clock by o seconds.

HEEP-TABLE —= addr
retirgsl the address of an erght word tabia
containing the parameters for BEEP.

BEEP - '
Uses tae parameters 1n BEEP-TABLE rp Make a noise,
BEEFER duration pitch -=
Sets the parameters into BEEP-TABLE and calls
BEEF. ’
PILL-BLOCK width height x ¥y colour -~

Graw and f1]; 3 b}ogk of size width*height at pasiticn x,y
rﬁlatxye td the origin of the wipndow attached to the default
channeyg,

BORDER B width colour --
Redefine the scorder of a window.

CHANNEL fob -= di . .
Return§ the chanaeli-1d of thne channel associated with tne
given f{oo.,

CIRCLE fx fy fradiua --
Draw a c.rcle, senctre it paint x y

sty

ERROR MESSAGES

COMPUTER ONE FORTH
APPENDIX 1
Error Messages

FORTH error messages are stored 1n text form an screens 4 and 5 of

systems that
version, only
are dstailed j

MESSAGE
NUKMBER

1

I3

14

17

id

19

29

have discs, or aother fast mass storage. On this
error numbers are given., Assembler error messages
n the assembler sectien of the manual.

MESSAGE/
DESCRIPTION

EMPTY STACK
The parameter stack is empty.

DICTIONARY FULL
The dictionary space is exhausted.

HAS INCORRECT ADDRESS MODE
IS NOT UNIQUE

The word defined already exists. This is a warning only,

IS5 UNDBPINED
The word name being locoked for cannot be found

DISC RANGE ?
The disc block address is outside the range-of the

micro drive files,

FULL STACK
The parameter stack space is exhausted.

DISC ERROR
There is a micredrive error.

BASE MUST BE DRECIMAL
The current value af base is not decimal

MISSING DECIMAL POINT
Floating point conversion fajiled to find a dec.mal
point in the mantissa,

COMPILATION ONMLY, USE IN DEFINITION
A word which can be used only inside a colan
definition has been used outsidea colon definition,

EXECUTION DMLY
A colon has been used ineide of a colon definiticn,

CONDITIONALS NHOT PAIRED
Conditiaonal words are not paired or nested
correctly.

DEFINITION BOT PINISHED
A definiticn has been terminated by a semicolan

before it has been completed.
- 66 =

COMPUTER ONE PORTH

21

12

23

24

27

28

29

30

13

14

15

J&

17

40

11

42

43

ERRCA MESSAGES

IN PROTECTED DICTIOMARY
An attempt has been made to FORGET below FENCE.

USE ONLY WHEN LOADING
The operation ==> was executed from the keyboard,
not from a screen being loaded from disc.

OFF CURRENT EDITING SCREEN
An attempt has been made to edit a Sciwen owtside of
the screen’s bounds.

DECLARE VOCARULARY
Aa attempt to FORGET has been made when the CONTEXT
ané CURRENT vocabularies are not the Same .

ILLEGAL FLOATING POINT FORMAT
Forth atctempred to do a floating peint cperacian and
could not use the string supplied

ILLEGAL DIMENSION IN ARRAY DEFINITION

I'ssued when an array 1s declared, tnis error MES 54
tadicates an impossible {negacive) dimznsion or tnag
there 15 not enough memory for the array.

NEGATIVE ARRAY INDEX
The i1ndexing value of an Array 1s negative,

ARRAY INDEX TOO LARGE
A run-time access to an array attem.red to index
cutside the declared size of the array.

INCORRECT SOURCE ADDRESSING MODE
Assembler error message.

INCORRECT DESTINATION ADDRESS1HG MODE
Assembler error message,

GUT OF RANGE -128 <= N <= 127
Assembler error message.

OUT OF RABGE 0 <= H <= 15
Assembler error message,

OUT OF RANGE l <« N <= g
Assembler error message.,

BUS ERROR
Privileged or non-existenc memory .

ADDRESS ERROR
Memory operation on odd address.

CUHRECOGKIZED OPCODE
Probabie bad return stack.

RIVIGE BY ZERO

-~ &7 -

¥

]

\

COMPUTER ONE FORTH BIBLIDGRAPHY

APPENDIX 2

Bibliography and Referances;

As yet, only FORTH Tools, Vol ! is dedicated to FORTH-8). Despite
this, the techniques described :n these books are still of value
as the major differences between the implementaticns are seen by
the implementor and when using advanced techniques. The
inexperienced FORTH programmer should still find these books
useful,

FORTH 83 Standard.
FORTH Interest Group, PO Boax 1105, S4n Carlos,
CA 94070,

STARTING FORTH, Leo Brodie, Prentice Hall,/Forth Inc.
This book is st111 the best introduction to FORTH, and is likely
to be a classic.

FORTH PROGRAMMING, Scan’on
An intredaction Lo FoRtl wita guud chaptets on SLIing afd g, . a,
handling, subjects citen ianored by other books.

THE COMPLETE FORTH, Alan winfield
h papuiar introductory book based on systems using FORTH-79

FCRTR DIMENSIONS (Rewsal_ic_r), Fun.d Interest Grouy, PU BOX 1.3,
San Carlas, CA 9407y,

The American FORTH user group.. The original FORTH magazine and
still the best. The quality of some of the articles is gquite
outstanding. Lec Brodie presented a compiete text editor and word
pracessor 1r this megazine. They take credit cards and back issues
are avajlacle.

SYSTEMS GUIDE TO FIG-FQRTH, Ting, Offete Enterprises

This book is the implementor s bible. It describes the whys and
hiows of the internal workings of FORTH.

BYTE magazine, - :

The August 1980 issue of BYTE was devoted to FORTH and contains
many useful articles,

Dr. DOBBS JOURNAL .

Or. Dobbs has become a serious and respected software magazine,
It is usually a treasure chest of goodies for people interested in
Sericus programming., The S~ptember issué each year 15 wusually
deveted to FORTH.

—
S Sdem mam s s mmm— S ik S s i e e R W e s i Sl i S e dmlee dwkie ek S FLAF ORI M WS b

—
T

|
|
!

Computer ONE — Software Problem Report { FORTH }

Hame ...vnrnmavaas L iara s an feturn to :

Address00. Crerethesnannern Computer One Ltd.,

Science Park,
Miltan Road,

Cambridge B4 4RH.

Telephon2 Number

Nature of Problem (tick): Oucumentation error| | Software error| |
Cperating System Version,... {type ‘print vers’
Software Error : Please describe proplem in as mich detai]l as

possible, giving the keystroke sequence which caused the error.

tenclose listing if poss:ole) -

Documentation Error : Please include page number
description .

Comments or Enquiries :)

Detach and return sheet o Computer Ona at-dbove aadress

1o error

GRAPHICS ¢ SOUND wORD SET COMPUTER CNE FORTH

CS1iIE width height -=
Set a new character prinl size for use in the default channel.

See: QL wanual keywords, CS5IZE; or use the predefined words

HAHROW, WIDE, EXPANDEDR, SHORT and TALL e,.g:-
WIDE EXPANDED TALL CS1ZE

CURSOR fzx fy fzrel fyrel --
POSLL1ON SCreen cursor at position {xrel,yrel!) reiative to the
graphics curser position (X,y}. Note that xrel and yrel! are
specified in the pixel co-ordingate system and x and y in the

graphics coordinate system.

CURS=0N -
Lurn Cursor On

CORS-OFF -
turn cursor off

DATE -+ date
returns the setting of the QL cleck 85 a 3Z-bit

number of seconds.

ELLIPSE fzx fy fradius feccentricity fangle --
Praws an ellipse centre X,y with the ratic between the major
and mInor axis being the eccentricity, angle is the rotational
angle relative to the screen vertical,

FLASH flag —
Low resclution mode

GET-XY ~= X ¥
Returns the current zursor character pesition

INK colour -~
S5ers the carrent i1nk colour, The standard c¢oleoprs are

predefined words. Stipple coiours may be generated using WITH
and tne st:ipple words i-IN-4, H-STRIPES, V-STRIPES, and
CHEZKERS, e.g.;~

RED INK

RED BLUE WITH CHECKERS INK

INPUT == dl
+~ Returns the channel-id of the current input channel

IS=-1RPOT dl --
Set3 the channel-1d of the current input channel

I5-0UTPUT dl -~
Sets the channel-id of the current oautput window.

I5=WORK 41 --
Sets the channel-i1d of tne current work window

LIme fxl fyl £x2 fy2 --
Draw a line from xl yl to x2 y2 .

- G4 -

enly., When flag is true the flash will be on.

L
COMPUTER ONE FORTH GRAPRICS & SOURD WORD SET

CUTPUT == dl
Returne the channel-id of tne current output window.
OVERPRINY n ==
Sets the type of overprinting required.
n = -i Print in ilnk over previous contents of screen
n= 90 print ink on strip
n= 1 print imk on transparent strip
PAMN n part -=-

Move a window n bixels vo the rignt or left.

PAPER cpiour =--
3ets new paper ccloyr, see INK.

FOINT fx fy ==
Plot a point at pesition x y

RECOL c0 cl ¢2 €3 c4 ¢5 ¢c6 o7 -~
Recolours 1ndividual pixels on the screen according ts the
parameters, for mcre cetails see the QL Super8ASIC manual,

SDATE dl =--
SOATE allows the (L's clock 10 be reset *to <he number o
seconds given. o

SCROLL n o~-=
Scrolt tne window attached to the default chanpel u or dawn
Sea: FaN B or 9odn.
SET-MODE dl ==

Sets the mode resoldtion to 4 colour or & celour. The doubie
word pul wi the stavk ts 4 or 8.

SET~-XY Xy --
Sets the Current cnaracier positicn.

STRIP colour --
S5ets rthe current strip colour of trhe window zttached to the
default cnannei te colour. See INK, i

UNDERSCORE flag «~-
Turns underline on for subseguent characrer outiuts,

W=DATA == addr
aod{ 18 the address of 2 {our-woré table CGotaining the
ﬁl?GOW § width, he:ght, cursor x-pusition, cursor y-positxon‘
This table may be read using WSIZE-C or WSIZE-P '

W1 NDOW w-addr ==
Allows ;he user to change the position and size of a window
Any oporders are removed if this window 1s redefined,

WORK == dl
returns the channpel-id of the current work window.

- £ =

" MISCELLAKEDUS WORD SET COMPUTER ONE FORTH

EDIT fedit®
lavekes the FORTH screen editor.

LOMAME addrl -- addr2 *link-to-pame®
adérl 1s the name field address corresponding to thr link
ficld address addri.

LINK> 2ddr]l =-- addr? “Erome-link®
addrl 1% the compilation address corresponding tc the link
fieid address addrl.

H>LIKKE addrl =-=- addr2 "name-tc-link®
ad€r2 15 the link field address correspondinhg to the name
field address addrl.

HAME> addrl -- addr2 "from-link"
adér? 15 the compilation address corresponding to the link
fieid address addrl,

NOQP -- "no-op*
A FORTH null word.

FRINTER - . "printer®
Hare the l:ine printer the principal output device. See: CONSCLE

RP! - “r-p-store"
initialize the return stack pointer from the user variable RO.

RP@ -- addr "r~p-fetch®
addr is the curcsent value of the returp stack pointer register
cn the parameter stack, -

SCOPY "screen copy®
Cop:es a seiected number of screens from the current screen
file to another screen file. Scopy prompts for the

gestination screen file and for the screens to be copied. It
9ives the option of creating a new screen file 1f the
specifiled one does not exist,

SPI —-— *s~p~store"
Iritialize the stack pointer register fram S0

spg " ==~ addr *s-p~fetch®
addr is the address of the top of the stack before SPE was
executed.

STRING, addr p - *string-comsa*®
ALLOT n bytes and store the the string starting at addr at
HERE -n.

TASK - “taagk®

& non-cperation ward which can mark the boundary between
applications. By forgeting TASK and re-compi1ling, an
applicstion can be discarded in 1ts entirety.

- 60 -

COMPUTER ONE FORTH MISCELLANEOUS WORD SET

TRAVERSE addrl n -- addr2 "traverse"
Move acress the name field of a FORTH-B3 variable lengih name
field. addr] is the address of either the length byte or the
first lerever., 1f n=l, the motion Is towards high memery, af

=-1, tne motion is towards low memory. The addr? resuliing is
the address cf the other end of the name.

WARM "warm”
Clear the sStacks and voler execution state, Return control to
the keyooard,

+ UNCONTROLLED REF. WORD SET

COMPUTER ONE FORTH

GLOSSARY SIX:

FORTH—83 Uncontrolled Reference Words

This glossary list the sords included in Coumputer One FORTH, and
whoose meanings are recommended {but not controlled) Dy tne
FORTH-83 standard.

+BLOCK w -=u ‘plus~block®
¥ is the sum of w plus the number of the tlock being interpreted.
5 - "semi-s"
Step wnterpretion of a block.
<> wl w2 -- flag “not~equal®
flag 1s true .f wl is not equal to w2.
> l6bl -- 16b2 "bytes-swap®
Swap the high and low bytes within lébj . '
AGAIM - c,I “again®

Sys -- [compilinﬁl
Effect an uncondicticnal jump back to the =tart of 4
BEGIN-AGAIN loop. sys is balanced with its carresponding BEGIN.

See: BEGIN
1

ASCII == char Iu “as-key"
=- igcompiling}
Used in the form:
ASCII coco
where the delimiter of ceec is a space. char is the ASILI
character value of the first character in ccc., If
‘interpreting, char is left on tne stack. if compiiirng, compile
char as a literal so that when the colon definition is later

executed, char 1s left on tne stack.

ASHIPFY 16bl B ~~ 16b2 "a-shift”
Shift the value 16bl arithmetically n bits left if n is
positive, shifting zeros inte the least-significant pit
posttions. If n is negative, 16bl is shifted right; tne sign
is rncluded in the shift and remains unchanged,

B/BUP ~= 1024 “bytes-per-buffer"®
A constant leaving 1024, the number of bytes per blozk wulf

- 5§ -

COMPUTER ONE }'ORTH UNCONTROLLEN REF, WORD SET

BELL) - L] *beli*
Activate a terminal bpell or nolse-maker as 2PEITQpYricate to the
device irn use.

FLD) =« addr 1] "fal-g*
A variaple peointing to the field length reserved for a number
during output cenversion,

IRDEX el u2 -~] “index"”
Frint the first line of the each screen over the range
lul..w2]. Th:is displays the first line of each screen of

source text, which conventionally contains a title,

LAST == addr - 1} “last*®
ﬁ_ua;xable containing the address of the beqinning of the 1ast
dicticrary entry made, which may not yet be a completa or
valid eatry,

MOVE agdri addr? u -~ *move”
The . oytes at address addrl are moved Lo addr2, The 'data are
moved in such that the u bytes TeMaining at address adar? at
the same data as was originally at adgri. If u 2 z2erc
nothing :s moved,

NUMBER addr == d . "number®
Conve;t the Count and rcnaracter STring at addr, to a s:aped
J2-bit 1nteger, 451ng the value of BASE . 1f Tumer o

Tonversion 15 not possibie, an error condicrion uxists. The
Etring may contain a preceding minus sian.

s0 == addr U "s-zero®
A variatle containing the address of “he bottom of the stack.,

SHIFPT . . lébl n == 16b2 “shift®
Logical shifr 16bl ileft n hits if n is posttive, right n bits
1f_n 15 negative, Zeros are shifted into vacated b1t
pOSitions,

USER +n M "uaer"
k deflining word executed in the form:
+n USER <name:
which creates a user variable <name>. +n is the offset witnin
the user area where the value for <name> 15 stored. Ixecurticn
of <nage> isaves 1t5 absolute user area storage address, '

WORDS -— F M ‘words"
List the word names i1n the firstvocabulary of the current |y
active search crder. '

" ASSEMBLER WQRD SET COMBUTER ONE FORTH

COMPUTER OQNE PORTH SYSTEM EXTENSIONS WORD SET

GLOSSARY THREE:

FORTH—83 Assembler Extension Word Set

GLOSSARY FOUR:

FORTH—83 System Extansion Word Set

This glossary ilsis tne televant FORTH-81 words that control
access o the assemblar mMABMONLCS:

C,T,/9 "semi~calon-code”

sCODR -
sysl -- sys2
Used 1n the form:
“namex> ... <create» ... :CODE ... END-COQULE

Stops compilation, terminates the defining word <namex> and
executes ASSEMBLER., When <namex> 15 executed in the form:
<pnamexr <name’ .

cu dafine the niw - npafe. , the xXocution address of <name> will
sontain the address of the code sequence following the ;CODCE
1r fnamexr. Execution of any <name> will ¢auge this machine
rocde seguence to be executed. sysl is balanced wizh :ts
carresponding 3ys2? is batanced with its corresponding

END-CCDE . See: CODE DQES» ,

ASSEMALER . - B3 “assembler”
Execution replaces the first vocabulary in the search order
WLTN the ASLEMBLER vocabuiary. See: VOCABULARY

CODE - BYS M, 83 ‘code”
A defining word executed in the form:
Z0ODE “Yname> ... END-CODE

creates a dictionary entry for <mame> to be defined by a
following sequence of assembly language words. words thus
defined are called code definitions. This newly created word
jefinition of <name> cannot be found in the dictionary wuntil
the corresponding END-CODE is successfully processed [See:

~ END-CODE). Execute2s ASSEMBLER . sys is palanced with 1its
carresponding END-CODE.

END-CO0E 5ys --= 19 "end-code®
Terminates a code definition and allows the <name> of tne

corresponding code definition ro be found in the dictionary.
svs is balanced with its corresponding CCDE or ;CODE.

See:; CODE

" i . :
This glossary lists theose words whieh define the standard functions
needed during compilation, The average user will not need these

<HMARK -~ addr .83
Used at the destination of a backward
; branch,]
typically only used by <HESOLVE to compile a branch addsz; te

CRESOLVE addr -- c.83
fsed at the 3ou:cu of a backward branch aiter either HYAANCH or
PBRANCH . Tompiles a branch awdress usina addr a5 the

destination address.,

JMARK -~ addr C,d1
Used at the saurce of a forward brancn
; he ‘ ¢h. Typically used after
either BRANJH or 7BRANCH . Compirles sSpace 1in thg dicrisnary

for a brancn address which will later be resolved oy »RE3JLVE

?RESOLVE addy ~= C.B83
Used al une destinaticon ot a forwarta o.o-..e... Taleuiates coe
brangh addre2ss {(to the current locationh in The le"unaAJ
using aadr and places this branch add cac of
= [2ss | 3 £
by nto the space lefe

ZBRANCH flag =-- C,83
When used in the form: COMPILE ?BRANCH a condlctlonal cranch
Goeration 15 compiled. See BRANCH for further detaifsu wn;;
executed, lf the [lag is false the branch is performed a; u;tﬁ
BR&HCH_. when flag 15 trye executionr cont:nues atr ~he
cempllation address immediately following the branch aucres;

ERANS:EH used i1n ;; f Ghan
he farm: COMPILE BRANCH } T i
bran;n operation is compiled.) nram‘"*an=-"l.-idr"ci-(}"-rt-:‘:l'L'-':-Le‘:-on:f
Egzs;ie:dsmmedxately folfruan this compilation address The
258 15 typica enerac iy T
peoLyn dress 18 ¥ g ed by following BRANCH witn

COHTEﬁT ad ~— addr g,79
The address of a variable which det i]
The address ermines the ductionary

CURARENT == addr g,79
The add;ess o§ 4 variable specifying the vocapbulary in which
new word definitions are appended.)

-53_

FORTH-83 PEGUIRED WORD SET COMPUTER ONE FORTH COMPUTER ONE FORTH FORTH-83 REQUIRED WORD SET

UM/ 0D ud ul == u2 ul g3 *u-m-givide-ood®
u2 is the remainder and ul is the [lecor of the guotient after
dividina ud by the divisor ol. All values and arithmetic are
snsighed. An error condition results af the divisor is zero
or if the quotient lies cutside the raznge [0..65,535}.

WORD char == addr H,81 "word"
URTIL flag ~-- c.1,79 "until® Generates a counted string by non-destructively accepting
5¥8 -- lcompil:ing) characters from the input stream until the delimiting
Used in the form: character char 15 ancountered or the input stream exhausted.
BEGIN ..., flag UNTIL Leading delim:iters are ignored. The =ntire character String
Marks the end of 2 BEGIN-UNTIL loop which will terminate based 1S stered ip memory reginning at addr as a sequence af byres,
on flag. If flag i1s true, the loop is terminated, If flag as The string is followed by a blank which is not included In ot.e
false, execution continues to 7Just after the corresponding count. The farst byte of the string is the number uf
BEGIN . sys is balanced with its corresponding BEGIN . See: characters {0..25%0. If the string is lorger than 2:53
BEGIN ’ characters, the gount 1s unspecified. If tne IAQUL stream ;s
dlready cxhausted as WORD is called, then a zero lengun
UPDATE - 1% "update® character string will resulrt,
The currently wvalid block buffer is marked as modified,
Hiocks marxed as modified will subsequently pe automatically if the delim:ter is not found toe value of >IN is the size of
transferred to mass storage should 1ts memory buffer be needed the input stream. If the deiimiter is found >IN 1is adjusted to
for storage of 2 a1fi=rent block or upon execution of FLUSH or indicate the offser to the character following the delimiter,
SAVEL-BUTFERS PTIB 15 unmodified.,
VARIABLE - M,79 "variable" The counted SLIL%Q returned by WORD may reside 1n the “"freos-
A odelining word executed an the Torme dicilonary areaz at HERE or above. Note tnat the tcox=o
VAHIABLE <rname> interpreter may also use this area.
A dictionary entry for <name> 15 created and twa bytes are
fLldleted an 1ts paramcter f1eld. This parameter field 15 to XOR 16b1 16b2 -~ 1&b3 79 *x-or”
oe used for the contents of the varilable. The applicatiorn 1s 163 1s tne bit-py-bit exclusive-or of 16L]1 withn léb2,
responsible for initialicing the contents of the variable
~1iI0 1T fredtes. when <namar 15 later executed, the address [- 1,79 "ieft~bracket®
of 115 parameter field is placed on the stack. -- icompilingl
:) Se8LS lnterpre:t state, The text from the input streaia .=
VOCABULARY - M,B3 *vocabulary® subseguently interpreted. Por typical use see LITERAL, Sec: ;
A defiming word exscuted 1n the form:
VOIABULARY <name> {1 ==~ addr C,1,M,63 “bracket-tick"
A dictlonary entry for <name» 1§ created which specifies a new ~+ tCompliing!
crdered l:ist of ward definitieons. Subseqguent execution of vsed 1n the from:
names replaces tne first vocabulary in the search oraer waith | '] <pame>
<name>, Wheh <name> becomes tne compilation wocabulary new Compiles the compilation address addr of <name> as a literal.
defrnitiens wil! be appended tc <name> s list. See: wWhen the colon definition 13 later executed addr 1s lefr on
DEFINITIDNS the stack. Ap error condition exists if <name> 15 not found
in the currently active search order., S5ee: LITERAL
WHILE flag -- c,I,79 *while”
. sys] -- sys2 {compiling) [COMFPILE] - C,I,X ‘“bracket-campile”
Used in the form: -- irtompiling) , B3
BEGIN ... flag WHILE ... REPEAT Used in the form:
Selercts conditional execution ovased on flag. When flag is [COMPILE] <name>
true, exeCution continues to just after the WHILE tnrough to Ferces compilation of the following word <named. This 2 iows
tne rEPEAT wnich then cont:nues execution back to just after caompilation of an immediate word when 1T would have etherwise
the BLGIN . when flag 15 !alse, execution contipues to Iust have been executed.
after the REPEAT , exiting tne ¢onirel structure. sysi Ls .
balanced with its corresponding BEGIN . sysZ is balanced with] - 79 “right-bracket*
1ts corresponding REPEAT , See; BEGIK REPEAT Sets confilation state. The text froem the input stream .=
i

subseguently compiled., For typical usage see LITERAL . See: |

- 48 - - 45 -

COMPUTER ONE FORTH FORTH-83 REQUIRED WORL seT

FORTH~B) REQUIRED WCRD SET COMPUTER OKME FORTH
. DO ... LEAVE .., -LOOP
PORTE~§ - 83 “forth-83 LEAVE ma : :
_ o A . - ¥ 2ppear within cther controt structires wnion 4T
Assures that a FORTH-&) Standard System is available, aested witnmin the do-loop structure. More than ohe LEAVE Ty
otherwise an error conditionh exists, appear within 1 do-loop.
HERE -~ addr _ 79 here LITERAL - 16b c,I,79 ® *literat”
The address of the next available dicticnary location. 16b == icompsling)
. Typically used 1n the form:
HOLD char == 79 _ hold® {"¥6b] LITERAL
char 1s inserted 1inAto a pictured numeric Output STring. Compiles 2 system dependent gperatich so that when tatuor
Typically used between <t and #>. executed, 16b will be left on the stack.
LI g
I - . c.78 , forms- LOAD u -- M, 79 *1oag"
% 1s a copy of the loop index. May only be used in the forw: The contents of -IN and BLK , wnich locite tne Surrent 10 s
0 ... T1... LOOP Stream, are saved. The input stream 15 thet redirectes o e
or beginning of screen o by selting IN to zerc and BTG L
O ... I ... +LOOF The screen is tnen interpreted. f interprezation from scp.oes
w:icw U 1s not terminated expiicitly 1t will Be terminated wrir s,
IF flag -- €. 1,79 it IhPpUT stream 15 exracsted and then the ontintg of In sao aiy
-~ sys {comp:ling} “ill pe restored, An error condition exiscs if . 5 Loro,
vsed 1n the form: See: 1% BLK BLOCK
flag IF ... ELSE ... THEN
ar LOOP - c,1,83
) flag IF ... THEN . _ 5¥S ~= CCmEpllinal
If flag 15 true, the words following IF are executed and the Increments tne SO-LUOP indeXx Dy cne. If tne new
words following ELSE wuntil just afrer the THEN are skipped. incremented across the boundary between !smitel ang
The ELSE part is apt:onal. i0Cp 18 rerminsted and LLOp COMLrol parameters are @recscd
. i R . . When the ioop is not terminated, EXECUL_ON CONtinues to
if {lag 15 false, words from IF through ELSE , cor from IF after the corresponding DG ., sys 1s balanced Witlh o-a
through THEN {when no ELSE is used), are skipped. sys 1is corresponding DO . See: DO
walanced with its corresponding ELSE or THEN . _
. . . - MAX nl B2 == n3 79 "max"®
IMMEDIATE - 3 "immediate” ni is the greater of nl and a? ace § x weravicn o
Marks the most recently <reated dictionary entry as a word == Fredte n A¢ ageording o the cperatics <
, whien will be =executed when encountersd during compilation MIN n! n2 == nj 19 *min®
rather than compiled. n3 is the lesser of i and 42 according o the operat.or of
J - w C.79 3" MGD al n2 -- 03 81 "mod’
¥ is & copy of the index of the next outer loop. May only be ni is the remainder afler dividin; nl by tne diviscr 3)
used within a nescted DO-LGOP or DO-+LOOP 1n the form, for Fes the S$ame S14n as nZ or i1s zero. An error sond -
exazple: ' : results 1f tne diviser is zero er 1f the guotient fc:. =
DC ... DO L. ... LOOP ... +LOOF vutsiage the range {-32,788..32,767}.
ZBY : -~ 16b M, 83 “key® NEGATE al -- n2 79 *negate”
) s . X - — €gate
The least-significant 7 bits of 16b is the next ASCII n2 is the two's complement of nl, i.e., the difference of zer
character received. All valid ASCII characters can be less ni. = p fob B BH 7 S
received. Control characters are not processed by ‘:.hel‘syst,ern ,
for any editing purpose. Characters received by KEY will not ROT 1661 ~= 16b2 a3 "nor”
be dispiayed. 1652 .s tne one’s cumplement of l6bl.
- a
LEAVE T compriing) ¢, 1,83 leave oR 16bl 16b2 -~ 1653 79 . “or*
' T ! 1 bit-py-b - f iébl th leb2.
Transfers execution to just beyond the next LOOP or +LOOP . §0) 15 the pir-oy-bit inclusive-or of 16 e b
The next loop is terminated and locp control parameters are OVER 16b1 16L2 ==
discarded. May only be used in the form: 16pl l&b2 16b3 14 "over”
DO ... LEAVE ... LOOP . 1653 15 a copy of 16pl.
or
- 45 =

- 44 - R

FCRTH=83 RECCIRED WORD SET COMPUTEK ONE PORTH

false. The words after UNTIL or REPEAT will be executed when
eirther locp is finished. s5ys 1a balanced with its
carrespending UNTIL or WHILE

BLE -- addr u,79 *b-1-k"
The address of a variable containing the number of the mass
storage block being interpreted as the input stream, If the
value of BLK 1s zerc the 1nput stream is taken from the text

roput puffer. {{0..the number of blocks available -1]} See:
TIB
BLOCK u == addr M,83 "hlock®

addr 1s the address of the assigned buffer of the first byte

of block v, if the block occupying that buffer is not block u .

and nas oseen UPDATEG 1t is transferred to mass storage before
assiguing the buffer. If block v is not already in memory, it
15 transferred {rom mass storage into an assigned block
buffer. A bleck many not be assigned to more than one buffer.
If u 15 not an available block number, an error coaditicon

exists. Only data with:n' the last buffer referenced by BLQOCK
or BUFFER is valid. The cantents of a bloex buffer must not be
changed unless the change may be transferred tc mass storage,

BUFFER u == addr M,83 *buffer®
Assign a olock buffer to block u. addr is the address of the
first byte of the block within its buffer., This function

15 fully specified by the definition of BLOCK except that if
the Dlock 15 not already in memcry it might not be transferred
from mass storage. The contents of the block buffer assigned
to block u by BUFFER are unspecified. '

¢l] 16b addr --) 19 *c-stoce”
The least-significant & bits of l6b are stored into tne byte
at addr.

cp addr -- 8b 79 *c-fetch®

8b 1% the .contents of the byte at addr.

CHOVE addrl addrZ u -- 83 "c-move"
Move u hytes beginning at address addrl to addr?. The byte at
aadr2 is moved first, proceeding towards high memory. If u 1§

zerc nothing is maoved.

CHOVEY addrl addr2 u -=- 33 "c-move-up"
Move u Dytes at address addrl to addr2. The move begins by
moving the byte at (addrl plus u minus 1) to iaddr2 pius u
minus 1) and proceed to successively lower addresses for u
bytes. If u is zerou nothing is moved. (Useful for sliding a
stripg towards higher addresses),

COMPILE -— c,83 *compile"
Typicaliy used in the form:
. <pame’ ... COMPILE <ramex> ...,
When <name> 1s executed, the comgilation address comoiled for
<namex> is complled and not execuced, chame> 15 typicaily
immediate and “namex> 1s <tTyp.tally nNat immedlate.

- 40 -

COMPUTER ONE FORTI FORTH~8] REQUIRED WORD SET

CONSTANT 16h «- M,B83 - tan
o r cons -
A defining word executed in the form: ¢
160 CONSTANT <pnameb>
Creates a dictionary entry for <namc:’ so that wnen < w
later executed, 16b will be left on the stack. fames us

COMVERT _ +d]l addrl =-- +d2 addr? 79 "caavert®
*d2_1s the result of converting the characters wichin the LEXE
beginning at addii+! into digits, using the vaiue of BA§E
and accumulating each into +dl after multiplying «dl xny the
value cf BASE . Conversion continues wuntil an unconvé}{igyz
character 1s encountered. addr? is the location of the E=rc'
uniconverclkie character., T

COUNT_ o addrl == addr2 +n 79 "countc®
aagrf 15 addrlel and +a0 is the lengtn of the counted 5tring a-
audrl. The byte at addrl contains tne byre oc T or Range of
T ¥ Soun . #range of

CR _ - M, 79 “c-r*
Cispiay & rarriage-recuru and !ine-reed O eyquivalent ¢peract. on

CHEATS_) =-- M, 719 “create"
A dofinung word executed in the form:
CREATE <name>

Creates a dictionary entry for -“name). After <name> 1s
crzated, the next available dactionary lecation is tne Tirst
S¥te of <nanes s paramete: fileld., Wnen <names 1s ihﬂﬁﬁqdcfﬁx
exegutgd, the address of the first byse o[pamer s pe:amé:;;
fieid 15 left an the stack. CREATE does not allocate f'aﬁe~1-
<hame>r 3 parameter field. T)

b widl wdd -- wd3 e :
; d-plus”
wdl 1s tne arithmetic sum of wdl pluz wd2, Bhus

De L dl d2 =~ flag 83 - "d-leas-then"
tiag 15 “rue 1i dl 15 less than dz aztording 1o the operaticn
af ¢ except zxtended to 32 bits.

DBLI%AL N - _ 79 ¥ “decimal®
Set the Lnput-ocutput numeric conversion base To ten.

DEPI?#?I?PS . - _ 79 *definitions”
e compilation vecabulary is changed to be tne same as the
first vocaoulary in the search order.

DEPTH = o4n 73 *3epth®
*nor3 the numter of lé-bit values contained in the data stack
pefsre +n was plazed on the stack.)

DNEGATE Al -~ A" 19 *d=negare "
Bz 15 the twe s zorplement of dil. s

- 4] -

FORTH-83 REQUIRED WORD SET

./

* /M0n nl n2 n3 =-= n4 a3

+1

+LOOP) nl =~ c,1,83

=TRAILING

COMPUTER ONE PORTH

blank following | is not part of cecc, { may be freely used
while interpreting or compiling. The number of characters in
ccc may be from zero to the number of characters remaining in
the input stream yp to the ciosing parenthesis,

wl w2 -— wi 79 “timesn”
w3 is the least-significant 16 bits of the arithmetic product
of wl times w2,

ol n2 n} -- pd 83 “times-divide”
nl is first multiplied by n2 producing an intermediate 32-bit
result., n4 is the floor of the guotient of the intermediate
32-pit result divided by the divisor n3. The product of nl
times n2 is maintained as an intermediate 12-bit resuwlt faor
greater precision than the otherwise eguivalent seguence: nl
n2 * n3 / . An error condition results if the divisor is zero
or if the quotient falls outside of the range
{-32,768,.32,767).

“timgs-divide-mod"
nl s first multiplied by n2 producing an intermediate 32-bit
tesult. nd4 is the remainder and n5 is the floor of the
quotient of the intermediate 32-bit result divided by the
divisor n3. A 32-bit intermediate product is used as for */ .
nd¢ has the same sign as nl or is zzro. An error condition
results if the divisor is zera or if the quotient falils
outside of the range {~-32,768..327671}.

Wl wl v~ wl 19 plus”®
wl is the arithmetic sum of wl plus w2 '

. “plus-store”
wl is added to the w value at agdr using the convention for +,
This sym replaces the original value at addr.

a* 1

wl addr -- 79

*plus-loop®
s$y6 ~- {compiling)

n is added to the loop index. 1f the new index was incremented
across the boundary between limit-! and limit the the loop is
terminated and loop control parameters are discarded. When the
loop is not terminated, execution continues to just afrer the
correspoading DO . sys is balanced with its corresponding DO ,
See: DO ; :

. léh =~ 4 75 * commp *
ALLOT space for 16b then store l4b at HERE 2- .

wl w2 = w} _ 79 *minus”
wl is the result of subtracting w? from wl

addr +nl -- addr +n2 79 *dash-trailing®
The character count +nl of a text string beginning at addr is
adjusted to exclude traiiing spaces. If +nl is zerc, then +ni
is alse zero. If the entire string consists of spaces, then
+*n2 is zereo.

- 38 -

COMPUTER ONF FORTH

FORTH-B] REQUIRED WORD SET

n = u' bl] "dot'
The absoiute value of n ie displayed in a free field format
with a leading minus s8iga if n is negative.

- C,1,83
-= lcompiling])
Used 1n the form:
." cee”
Later execution will display the characters ccc up to but not
including the delimiting * (close-guote). The blank follawing
." is not part of cce,

"dot-quote”

N - I,M,83 *dot-paren®
-- (compiling)
lsed 1n the form:
.{ cece}
The characters ccc up to but not including the delimiting !}
lclosing parenthesis) are displayed, The blank following .| 1s
not part of cece,

/ nl n2 == nj 83 *divide*
nd is the floor of the quotient of nl divided by the divisor
n2.* An error condition results uf the divisor is zeroc or 1if
the quotient falls ourside the range (~-332,768..32767%1.

/MCD rl nZ == n3 n4d a3 “divide-mcd*
nl 1s the remainder and nd4 the floor of the guotient of ;!
divided by the divisor n2. n3 has the same sign a5 n2 or is
terc. An error ctondition resulrs if the divisor is zero or 1if
the guotient falls outside of the range
1-32,7€8..32,767}., . .

ag n ~= flag 83 “zerc-less"”
flag is true if n is less than zero (negative),

Q= w -- flag g3 *zero-equale®
flag 1s true 1f w is zero.

0> n~~ flag 83 “rero-greater”
flag is true if n is greater then zero.

1+ Wl - w2 79 fore-ring”
w2 15 the result of adding one to wl according to the
operaticn of + .

1= w] -- w2 79 "one-minus"
Wi 18 the result of subtracting one from wl according to the
operation of

2+ wl v~ wl 19 “two-plus®

w2 is the result of adding two te wi according to the
oparation cf + ,

- 37 -

F1LEMANE fcbh-address ==
Used in the form: :
{fcb~addreas ~—) FILENAME <file-spec’
FRED FILENAME MDVZ_ELECTIVE_SCR
format a file/device/window specification incto the [ile
control bleck.

INPOT-FILENAME Ecbh-addressa --
Queries the console for a file name, and passes the
information to the contral block. .

MAKE-FILE fecb—address -- status-code
Creates and opens a new file with cthe name given i1n the
file control block.

OPEN~FILE fch-address -- status-code
Find and make available the file named in the file control
block fz2r further record aperations.

PARSE-FILENM fch~address string-address --
Transfer a file-name at the string address to the {ile
control block, and injtialise all reserved areas.

READ- HEADER foco—address --— status-code
Read a microdrive file header into the control area,

iength data-address channel-id

-= count Status-code

Read lengtnh bytes from the channel specified by channel-id
to the address given by data-address., The number of bytes
actunally transferred and the error status are returned.
This is the general purpose read primitiye.

READ-LEN

READ-RANDON fcb—address record-so. — status-code
Read the designated record from storage intoc the disc

buffer, returning either the buffer address or zero if the -

record cannot be read. A record size of 128 bytes is
assumed.
- .
READ-SEQ fch-addreas -==— atatus-code
Read the next sequential record {si1ze=126 bytes}) into the
dise buffer, returning the buffer address for success, or 0
for failure.

SAVE - -—
Used in the form:
SAVE <filename>
Saves a copy of the complete system as a memory image to
<filename>, This image will contain any code you have
added. It may be raicaded using a copy of BOOT that has
the filename of the bDinary file changed to <filename>.

- 12 -

SEEX~ABS ‘dl fch-~address -~ gtatus-code
#odifies the file pointer so that the next ifo will start
at the dl-th byte in the file.

SEEX-REIL dl fcb-addreas -—- status-cods
HMoves the file pointer by dl (signed} bytes,

WRITE-HEADRR fch-address -~ status-code

Writesa the file header from the file control block to (DOS,
WNRITR-LEN length data-address chansel-id
' - count statys-code
Write length bytea from data~adress to the device, The
numb#r of bytes actually transferred and the errar status
are returned, This is the generaz]l purpose write primative.

&
SRITE~RANDON fcb~address record-gmmber - status-cods
Write the record (sizeal2d bytes) from the buffer azea ..
the device, returning the buffer address for success, or 0
for failure.

WRITE-SEQ fch-address -- atatus-code
Write the buffer to the device, returnihg the bueffer
address for success, or 0 for failure.

A simple example using the interface functions. Open a file named
USER_TMP, read record 0 into memory, then print word 0 of the
record.

FCB FILEL { establish fcb)
FILEL FILEWAME USER_TMFP { set up file name)
: DEMQ FILEl GPEN-FILE

ABORT" File not found”
FILEl O READ-RANOOM DUF Q=
ABORT®" Record does not exist™
2.
FPILEl CLOSE-PILE DROP ;

For more details of the error codes see the SuperBASIC manual.

Serial hummbers

When a substantjal alteration to a word ‘s definition L& made or
when & new word is addded, the seria) iunber will be the last tWo
digits of the year of the respective FORTH Standard in which such
change was made {i.s., "83%),

Stack Paramecters

Unless otherwise stated all references to numbers apply to Ib-bit
signod integers, The wmplied range of values is shown as
lfrom..tol. The content ©f an address i1s shown by double praces,
particulary for the contents of variables, i.e., BASE 12, .72},

The fecllowing are the stack parameter abbreviations and types of
humbers used thraughout the jiossary. These aboreviaticns may be
suffaxed with a digit to differentiate muitiple Parameters af the
same type.

Stack Humber Range in Minimum
Abbrv, Type Decimal Field
flag oaoliecan O=ralse, olsestrue 16
trae boolean =l {as a tesulr) 3
false bonlean a 16
b bt 12..1) 1
char character i0..127) 7
ghL § arpatrary bats ibyte} AOT applicable . 8B
1én 16 arbatrary bics not applicable if
n number {(weighted pies; {-32.763_.32,?67} H
+n positive number iDL 32,787 ig
u unsigned number f0..65,5135] 16
w unspecified weighted i€

number {n or u) {—32.758..65.535}
addr address (same as u} 10..65,535} le
i2p 32 arbitrary bits not applicabkle 32
d double numper ' 1-2,147,483,683, 648,

. 2,147,4813,647] iz
+d positive double nrumber !0..2.147.483,6(?} 32
ud - unsigned double number IO..4,294,967,295] 12
wit " unspecified welghted 1-2,147,453,648.. 12
* double number (3 -er ud) 4,294,967,295)

sys 0. 1, or more System

dependent stack entries hot applicable na

Any ather symbol refers to an arbitrary signed lé-bit integer in
the range {—32.758..32,761}. unless otherwise noted.

Because of the uwee or TWE '3 o o aritnmecic, the signed
lé-bit number {n) -1 nas zhe Same bit representation as the
unsigned number {u) 65,535, Both of these numbers are within the
5t of unspecified weighted numbers (w),

- 2B -

Input Text

<name> .
An ardbitrary FORTHE word accepted from the input stream. This

notation refers to text from the input stream, not to values on
the data stack,

ceo) o
& sequence of arbitrary characters accepted {rom the input stream

until the first occurrence of the specified delimxtgd characzer.
The delimiter 15 accepted from the input stream, but it is not one
of the characters ccc and is therefure not otherwise Erocessed,
This notation refers to text fram the Lpput stream, not to values
on the data stack. Unless noted otherwise, the number of

characters accepted may be from 0 to 2%5.

R A
R

COMPUTER ONE FORTH
68000 ASSEMBLER

COMPUTER ONE FORTH

© 68000 ASSEMBLER

4.4: ASSEMBLER MACROS

Defined in the assembler are several "macros"™ that extend the
usefulness of this assembier. The defined macros are:

HEXT, Compiles a three-word routine that transfers
o contral back to the “inner interpreter”® T
RESET RESET, FORTH f ?
ROL Dx, Dy Dx Dy ROL, ’
ROL
ROL !edarad, Dy data> 1 Dy RoL. PUSHFORTH, Pusnes the FORTH registers (IP, W, RP, SP, &P,
ROR ox, Dy Dx Dy ROR' and 05,) onte the stack so that they can 't be
' s -
EOR i<data>, Dy <data> ¢ Dy ROR, altered within a code definition.
DR Leax <ea>r ROk i |
ROXL Dx, Oy Dx Dy aoxﬂ, POPFORTH, Restores the registers pushed above.
RCOXL ¥<data>, D <
ROXL <;a> PRy (g::a> 1 Dy gg:t; L.J5R, hssembles & 32-bit “jump to subroutine® :or
ROQXR bx, Dy Ox Dy ROXR. accressing system routines anywhere in tne
ROXR f<data>, Dy <data>) Dy ROKR: address space of the 68008.
ROXR {eaz <aa> ROXR,
RTE RTE
A RTR, 4.5: USING THE ASSEMBLER
RTS
SBCD Dy, Dx Dy Dx :ggé Normally the assembler will be used to create new FORTH words
SBID ~(AY}, =-(Ax) -1AY) - (AX) SBCD' written in assemdler. Such words use CODE and END-CODE in place of
s5¢ce <ear <ead . Scc * : apd ; . To return to the PORTH interpreter the word NEXT, is
STOP #<data> <data> ¢ swoﬁ, used (ie: 'NEXT f[ollowed by a comma ané po space between theml.
S5uB <ear, Dn (%a> D i i
SuB pr, ;ea> Dn <ea: ggg' The word CODE creates a new dictionary header, and switches the
SUBA <ear, An <ear An SUBA vocabuldary used for looking up words names in to the ASSEMBLER
sSuBI ¥<data>, <ead <datar § Ceax SUBI' vocakulary. The vocabulary in which the word 1s built 1s
o sSUBQ #<data>, <ea>» <data> § <ead SUBQ' anchanged. 1f you are confused by thia ignore it, it is really
: sU Dy, Dx Dy Dx suax' oniy a technical detail. If you do not want a code header to ne
. SUBX -ihyl, -(Ax} ~tay) -(Ax) suax' built, use the word ASSEMBLER te switch on the assembler words
: SHAP Do Dr swap: {try FORTH WORDS, and then ASSEMBLER WORDS).)
" ThS <ea> ' > initi 1 i
& TST ceas :§:> ;gg‘ As an example, study the definition of CMOVE in assembly language.
TRAP t<vector> <vector> |§ TRAE UMOVE takes three arguments {from the stack: The source address,
TRAPY TR&PG the destinaticn address, and the number of bytes (topl. It then
UNLE An An UNLK ’ moves the specified number of bytes from _he source to the
’ destination address, incrementing both addresses with each

iteration.

{ source destination count == }
CODE CMOVE

3 L
- 4.3: LOCAL LABELS {SP)+ DO MOVE, { pop the byte count }
: The FORTH ass ' {SP}+ OS MOVE, { pop dest. address, logical |
i A local lahel2:21;fagtzdSusizge:;:r:g:éfbe15' 0 d(BP, OS) AD LEA, { convert dest. te real addr)
j o (seie 08 NOVE, { pop source address, logical |
k3 n$: twhere n= }...5) 6 4{BE, OS) Rl LEA, { convert to rea) address |
) 1s: 1 # DO SUBQ, { decreqent byte count }
It is referred to using the word: 2% BMI, [loop finished? }
’ [Al}+ (ACI+ B. HOVE { move one byte, post incr. !}
nd 1§ BRA, i brapch te start of loop)
25: REXT, { end execution }

hv

Note that forward jumps are possible
- 24 =

[Note NEXT, iacludes END-CODE .}

- 25 =

CTRL L Repeat previous search

{screen commands]

CTRL E Clear the entire screen and leave the cursor at
the top left cerner.
CTRL SHIFT E Erase screen from current cursor positlon to end.

CTRL N Write current screen to store, and go to the
next screen.

CTRL P . Write current screen to store, and go back to
the previous screen. -

CTRL SHIFT P Write the current screen to store and go to

screen Q of the current file,

CTRL SHIFT N Write the current screen to store and go to the

last screen of the current fFile.

CTRL 2 Discards ALL the editing changes since the
screen was last loaded from store,

iKiscellaneous cosmands) ‘ ’ -

Fl . Display menu of control todes.
ESC Leave editor and rerurn to FORTH s command
interpreter,

- 20 -

COMPUTER ONE FORTH |

MOTOROLA 68000 ASSEMBLER

68000 Asémm
CHAPTER FOUR

The assembler may be used to create new machine language
primitives (CODRE definitions) in the FORTH dactionary. This
capability 1s useful in applications, that are rtime dependent.
FORTH programs can oiten be sped up a surprising degree by
rewrizing a few definitiona in assembly language.

This assembler, like all FDRTH zssemblers of the uswval FORTH
design are intrinsically macro-assemblers. FORTH assemblers work
by defining a set of words to correspond to the processor’'s
registers, addressing modes ete, These words setr flags and collect
data which is processed and compiled into the dictiocnary by
anocher set of words, These words are the assembler ppcodes
themselves., Like all FORTH operations the operands {reyisters,
modes and addressss) must come before the operators lassembler
opcode MOSRORICS ¢.9. ADDI. BSecause of the full macro facilities,
gk *ovel assembler structuring facilities can easily be added at
2 later date. Source code should be edited using FORTE s editor.
or can he entered direct firom the kevboard. i

Load the assembler by typing “ASM°, and then switch 1o tie
assembivr vocaoulary by typing "ASSEMBLER . - .

4.1: EFFECTIVE ADDRESSES

The FORTH assembler accepts the following effective address (<sas F

formats, The abbreviations used aret

DX - a Gata register (x = 0,,.5) or 05 W
Ay = an sadress register [y = 0..,3) or RP-SP BP IP
Rz = an address or data register

CHAPTER THREE

THE FORTH-83 FULL SCREEN EDITOR

CHAPTER 1: THE FORTH-£1 FULL SCREEN EDITOR

3.1: INTRODUCTION

conpu;er Une PORTH includes a full screen editor which allows you
Eo edx; FORTH source text. Traditionally, FORTH has edited source
fi1les in terms of 1 k-byte blocks, prescnted as 16 iines of 64
\:harzc:urtT Thege wir RNOWR a5 ot -tia, G MAY Dur Trerredio oo, -
QL microdrives as described 1n the fgllowing section,

3.2: MASS STORAG

:te SIresty o soures text are srered Of BIicTeuirivie oan
soreen f1les, *'ﬁxr 313¢ Deang llmated by the avallani S|aTe on
microdrive, The screens are numbered from zero upwards,

_‘?o open or chinge the default screen file being accessed,
FSRTH provides the word “USTNG . AL startup, the Tile
Ve Larih scr 15 used as default] You cap change the default
screen f1le to wdvi_forth_ser. by cyping: B

]

vsing mdvl forth _scr =

The word BLOCK .15 used to acwess blocks [screenst on the
screen {ile, via FORTH's internal buifers, The word "LOAD ™ :is
ksed to interpret 1nput text from specified screens am the soreen
fEie._ These words are descriped more elabarately in Glossary 1.

3.3: ENTERING THE EDITOR - command mode

Te start the editer use the word EDIT, thit will enter the First

level of the editor, within which the
available:- Ly th ! following commands are

3.3.1: Command Modes Control Codes

Fi pisplay menu.

C Copy & single screen of text within the file. The user is
prompred for the source and destinstion screen number.

E Begin editing. The user is prompted for the number of the
first screen toc be edited,

I Display index of current screen file.

b Move a set of screens within the current file. The user

J% profptued for the number of the [irst source screern,
and ‘the first destination screen. Depending on the
direcrtion of the transfer, the routine begins ar tne
appropriate end of the screen range so that when screch
numbers overlap no data will be destroyed.

u Change screen files. All updated buffers are written to
the microdrive. The user is prompted for the drive
assignment and the name of the new screen file. If the
new file cannot be located, the previous screen file is

reopened.
ESC Write all updated buffers to drive, and return to FORTH.

when a screen number is reguested in command mode, yOou MUST ERTET
a decimal number (any number of digits) followed by a carriage
roturn., You may use the usual keys to delete incorroct digits.

3.4: EDIT MODE

Cdit mode is entered by using the E command i1n command mode, and
is left by using the ESCAPE key,

A1l ediring is done within the 16 row by 64 column box drawn on
the screen, The four cursor keys will move the Cursor within this
bex only. Typind apy printaple charactet will overwrite tne
¢x15ting character at the Cursor positicn and move the CUISOr on

one position.

Screcns are stored and loaded by the words BLOCK and FLUSH.

3.4.1: Edit Mode Controt Code

{cursor commsands]
SHIFT Up Home Cul50C. _
SHIPT Lown Move cursor to end of screen,

Leit Maove curser leit. If ecursor is aircady at tne

BEGIM. . .UNTIL
Template:- BEGIN words flag UNTIL

This structure forms a loop which is always executed at lLeast
once, and exits when the the word UNTIL is executed and the flag
{on the data stack) i3 true (non-zero), If you need to use the
termainating conditioan after the loop has finisned use =-DUP to
duplicate the top item of the stack if it is non-zero.
BEGIN., .UNTIL loops may pe nested to any level,

Example:;-

: TEST BEGIN KEY DUP EMIT 13 = UNTIL ;

BEGIN...WHILE,,.REPEAT
Template:~ BEGIN words {lag WHILE more words REPEAT

This 1s the mest powerful and perhaps the moat elegant (though
certainly not some purists choicel of the FORTH control
structures. The loop starts at BEGIN and ail the words are
executaed as far as WHILE. If the flag on the data stack is
fon-Zero the words catween WHILE and REPEAT are executed, and the
cycle repeats again with the words after BEGIN. This structure
it Jir xtremely flexible loops, and perhaps because it is
somewnat di1fierént e the structures of BASIC or PASCAL, this
sfructure 1s olten somewnat neglected. 1t does nowever, repay
examination. In chne examnple opelow, the console :s pollad until a
€y .5 pressed, and a4 counter is incremented while waiting.

Exampie:-

TEST BEGIN ?TERMINAL 0= WHILE | COUNTER +: REPEAT ;

CASE...DF ., .ENDOF...OF. . .ERDOP.CHDCASE
Temptate: - parameter CASE

valuel OF words ENDOF

value? OF words ENDOP

. def2ult words {otherwise zlause)

ENDCASE
CASE statements cxist to replace & large chain of nested IFs,
ELSEs, and ENDIFs. Such chains are unwieldy to write, prcne to
errof, and lead to severe prain-strain. The intenticn of a CASE
statement s to perfarm one action dependemt an the value of the
parameter passed into the CASE statement. If none of tne
conditicas 15 met, 4 default action {the otherwise clause] shaould
pe avairjable. Note that a select value must be availabple before
each OF againat which the entered parameter may be tested. The
select value is top of stack, the parameter 13 pext on stack lby
requirement}; OF then ccmpares tne twe values, and if they are

- 12 -

equal, the words hetween OF and ENDOF are executed, and the
program continues 1mmediately after ENDCASE. If the test fails,
the code between OF and ENDOF is skipped, so that the select value
before the next OP may be tested, If all the tests fa:l the
parameter is still on the data stack for the default action, and
is then consumed by ENDCASE,

2.7; USING THE GRAPHICS EXTENSIONS

The QL graphics features have been added in Tomputer Cne
FORTH. This section daives a commented example. program on using
the graphics words.. bBach word is described in the floating point
and grapnics glossary.

Computer One FORTH provides three channels which ma; be :n
use At any Ghe time; these are called INPUT, OQUTPUT and WORK. The
wnpdt channel i1s the ¢nannel from which all input 1s taken: the
cutput <channet 15 the channel to which all text is ocutput
{including UK prempt). The WORK channel 1s the cnannel te which
all the araphic and windowing words apply. Eg: EBLLIPSE, CL3,
WINDOW erc.

initially all three FOHTH channels output t¢ the same §D0S

channel - channel 0. There are s5i1x FORTH words asscecrated with
the 3} channels -~ WORK, QUTPUT, INPUT, I[S-WORK, IS-QUTPUT,
IS-INPUT, The first 3 words return the current channel 1d feor

each of the channels. The other words take a channel id and sat
the wOorkK, Oulpat or iapat channels to that chanuel.

I[f we type:

WORK .
OUTFPUT.
INPUT .

1
wnen the system has just been booted, all these operations will
rerurn O, since this is the initial channel id for all three
channels.
To dcfine new files, for example a new window on the
screen, 1t 1S nscessary to Qive a name to a fiie cantrol block

{fcb), associate that name with a filenawe and finally to open the
fala,

Example:
fcb new window | name of file control block)
nuw wifdow filenawe scr Siix2560a0x0
I frlename word associates the window dimensions

with the new window .

few_wilndow open-iile | open the window |

- 1] -

P i ST — - -

v

Although the use of a stack is intimidating at first, afterla
while it becomes natural, and eventualily you do not notice it

excepl an rare Qoccasians.

FORTH words are defined in this manual in terms of what they do
with and to the stack, We use a convention guite paopular with
FORTH programmers. The top of the stack is to the right, and the
peint at which the word executes is marked by two dashes, =--. So
to define the word +, which adas two numbers from the stack, and
lteaves a third on the stack, we would comment it thus:-

{ ni nZ -- nl»rn2 }

In FORTH Drackets are used to mark the start and end of comments,

2.3: INTERPRETING AND COMPILING
FORTH contains both an interpreter and a compiler.

Interpreting means taking the text fed in, converting it inte a
form the machiane can ex2cute, executing thagt form, and then
discarding tne executanie form. Many forms of BASIC do just this,
otners convert the pre-defined keywords imto tokens first, and
then interpret the tokens. This is a very slow procedure, that
can cnly be improved by using a very large BASIC.

Compiling means taking the input text, completely converting it
inte a machine executable farm, keeping the executable form, and
drscarding the text. This can produce a program that runs very
fast, but you cannot change anything without first editing the
source text, then compiling it (using a separate program called a
compiler}, and then loading the executable code when you want to
run it. -
1

&ny text fed to FORTH, either from the keyboard or from mass
storage, is first compaled to a list of addresses, and this list
of addresses is then interpretad if required. One reason for
FORTH s speed is that this interpreter, called the inner
incerpreter, 18 actualiy very snort, only two or three machine
IngLrUCtions OR SOme précessors. The slow and laborious job of
compiling is performed as the text is entered - afrer you typed

- carriage return. The time taken to do this campilation is very

short as far as you are concerned, but it allows subseguent
execution of the code to be very fast.

Remember, all commands to FORTH are pre-defined ‘wards’ in its
‘vocabulary’, consequently FORTH can look up thne address of a
given word for later execution. Some words in FGRTH change the
way the compiler section deals with text. For instance we could
define a word that doubles the vaiue given to it.

tnl --- nl*2) 1 2% PR

The address of the word : is found and : is executed; the action
of : is tell the compiler section to define a new word whose name
comes next t7*}, and then compile inte the new ward the addresses
of the words that foliow., This would carry on for ever unless we
had a way of stopping it, and this is provided by “immediate”
words such as ; which are always executed, regardiess of what the
compiler would otherwise be doing. The action of ; is te Stop the
compiler compiling word addresses, and return it to the mode of
executing the addresses instead. There are other words {defining
words) which are used to create words such as : - these are one 13
the keys to advanced use of FORTH, At all times remember, however,
that the basis of FORTH 1s always very simple, FORTH is a
language built from a number of very simple ideas, rather than one
founded on a few complex systems.

2.4: DEFINING WORDS

Some words such as : in the preévious section, are called def:ning
words, pecause they are used to define new words (2* ip the
previous section); these words are one of the keys to the pawer of
FORTH. The word creates a new word in the dictionary, marks it
4s 3 high-level word {one writtea in FORTH rather than assembler)
ard switches FORTH from being an interpreter tc being a coampiier.
Any word names met from now on will not be executed, bur their
execution addresses will be found and compiled into the
dictionary. This process repeats until stopped, but it can anly
be stopped by the execution of a word, and all words are being
comcited, not executed, This problem is dealt with by immediate
wards.

2.5: IMMEDIATE WORDS .

The solution to the problem of the previous section is te have a
class of words which are always executed, regardless of whether
FORTH is supposed to be compiling. Such woards are called
impediate words, The word ; used to terminate a ftigh level
definition, is an example of such a word. When it exegutes, 1t
firstly switches FORTH from being a compiler back to being an
interpreter. Secondly, it c¢ompiles the address of the word ;S
which performs the funetion of returning from a high level waord,

2.6: CONTROL STRUCTURES

Control structures in FORTH allow conditional execution and
locping based on the value on the stack. They are usuzlly
implemented by means of words that execute at compile Lime
{immediate words). These words check for balanced structures fe.g
that IF is followed by ENDIF) and compile’ the conditicnal
branching astructure itself. Additional error checking ts alsg

performed.

it

We could now define words to Print people’s names.

t .FPRED ." Pred *
; - MARY -* Mary *
i .NEIL L Neil *

«LINDA -" Linda * ;

We also need a word to link the names together,

t JAND ." and " H _
HOow we can make a waord to greet all these pPeople. The word CR jis
used to print a carriage return followed by a line feed,

! .GHEET -HELLO .FRED .AND ,MARY «AND .NEIL .AND .LINDA CR ;
il
It we type GREET <ENTER> FORTH will respond:-

Hello Pred and HMary and Neil and Ljinda
ok

The secret of writing programs in FORTH is to keep everytining
simpie. Simpie things work, and all probiems can be split ineo a
sequence of very simple things. The programmer’s job is to decide
wWhat those simple things snould be and then write simple words to
do them., If the names of the words you use reflect what the word
has to do, then yYour Code will be readable and Gany to follow,

1.7: HOW FORTH I8 DOCUMENTED)
Abbreviarions and nomencliatore

FORTH words are described in the conventional FORTH scyle of
showing what is required on the data stack, before the word
execures, and how the stack is left afterwards, The top of the
stack is on the right and the execution point is denoted by two
dashes -~, e.g. %, the multiplication operator:-

' . nl n2 =~ n3
In the documentation all PORTH words are in upper case, but

Compuger-Ong FORTH will accept FORTH words in upper or lower case.
The following abbreviations are used for operands:

COPERAND DESCRIPTIGN

nl,ng,... 16 bit signed numbers
di,dz,,,. 32 bit signed numbers
ul,u2,,.. lé nic unsigned numbers
udl,udz,. 12 bit ungsigned numbers

addr] ,addr2,... 16 bit addresses

- 4 -

bl,b2,... 8 bit byte right justified in 1§ bit wora
el,e2,... 7 bit ASCII character right justified
in 16 bit word
16 bit boclean flag
zero for false
non-zero for true
sl,s2,... Character string
xi,x2,... 1é bit, 37 bit, or 64 hit number

v/ELEL,E2,...

1.8: WHERE TO FIND A WORD

If you find a word and want to know what it does, look it P 1n a
9lossary. A glossary 15 a2 FORTH term for an alphabetically sorted
list of FORTH words with descriptions of what they do. We canrnot
call this a dictionary, bkecause rthat is a term that refers tc
FORTH code itself. This manual cortains gight glcssaries,

There is a glossary for the FORTH nucleys itself. This inciudes
the standard words which are included in zthe ‘Required Word Set
Glessary. fThe other glessaries describe general purpose
€XLensions we have made to the nucleys.

The assembler has 1its own vocabutary called ASSEMBLER, and a
9lossary of 1ts own in the assembler section of the maaual. Gniy
these words which are accessible are documented. Many other words
used within the assembler are headerless and hence cannot pe
reached by the user, The Assembler words are described in Chapter
¢ and che Assember Word Set Glossary,

Most of the words dealing with QDOS input and cutput are
documented in Chapter 6. &all the input apd QuUEtput words are
accessible as we pave rriad to glve the user fult access ro the
‘Operating system in a painiess manner. ‘

The floating point, graphics and sound words are all described in
Glossary 8.

You may well find some words in the dictionary that are not
documented at all. These have been left our deliberately and are
words which are only used in Passing as part of other words, They
may not exist in later versions of COMPUTER ONE FQRTH, and thus
their existance should not be relied upen,

1f you use the decompiler on some words you will find that they
cannot be decompiled properly. This is because there are internal
words which have been generated without dictionary headers, and so
ho name field exists for them,

1.9: ERROR MESSAGES

Error messages are held 1in screens 4 and 5 of FORTH_SZR, and Ts
6t be disprayed if{ these screens dr= Not open. {See Using .
A £ull list of error maessages is provided ip Appendix 1,

